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Abstract

Lie colour algebras are a generalisation of Lie superalgebras to grading by any abelian group.

They have recently been found to have physical applications. For instance, it was shown in

2016 that the Lévy-Leblond equation has Z2×Z2-graded Lie colour algebra symmetries. In this

thesis, we will examine the structure of these Lie colour algebra symmetries; in particular, we

apply a technique called discolouration (which relates the structure of a Lie colour algebra to

that of a Lie superalgebra) to classify these Z2 × Z2-graded Lie colour algebra symmetries. In

addition, we search for more Lie colour algebra symmetries of the Lévy-Leblond equation, and

find a new Z3
2-graded Lie colour algebra. We show that this Lie colour algebra is fundamental

to the Lévy-Leblond equation, and contains enough information to solve the equation.

Given that Lie colour algebras are finding applications, it is expected that their representation

theory will be a useful tool. We show how all the finite-dimensional irreducible representations

for Lie colour algebras can be found using the finite-dimensional irreducible representations

for the discoloured Lie superalgebra. We strengthen this result in the case of grading by the

group Zn2 to obtain a bijection between these classes of representations (up to weak notions of

equivalence). Despite the powerful tool of discolouration, this process is surprisingly complicated

and yields an interestingly distinct representation theory for Lie colour algebras.
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Chapter 1

Introduction

Lie colour algebras are a generalisation of Lie superalgebras to grading by any abelian group.

They were introduced by Rittenberg and Wyler [1, 2] in 1978, though similar structures had

previously appeared in [3]. Recently, there has been renewed interest in Lie colour algebras

(especially those graded by Z2 × Z2) and their potential physical applications. Of particular

interest to the present discussion is the appearance of a Z2 × Z2-graded Lie colour algebra as a

symmetry algebra of the Lévy–Leblond equation [4, 5].

The main purpose of this thesis is to examine the appearance of Lie colour algebras in

physical systems and their mathematical structure. Discolouration techniques (see [6]) have

rarely been applied in recent literature, despite awareness of these results. We will show how

discolouration can be applied to classify the structure of the symmetry algebras in [4,5]. We

also derive a new symmetry algebra for the Lévy–Leblond equation, which has a Z3
2-graded

structure. We show how this Z3
2-graded algebra can be used to aid in solving the Lévy–Leblond

equation.

The representation theory of Lie colour algebras is important to their applications. With this

in mind, classification results for Lie colour algebra representations would be useful. Such a desire

for a classification is expressed in [7]. In this thesis, we extend the discolouration/recolouration

techniques of [6] and provide a procedure to obtain the irreducible representations of Lie colour

algebras from the irreducible representations of the corresponding Lie superalgebras. This

procedure converts a Z2-graded Lie superalgebra representation to a representation graded by a

larger abelian group and then applies recolouration. In the case of a Zn2 -grading, this procedure

is a bijection between the irreducible representations for colour algebras and superalgebras (up

to weak notions of equivalence). This procedure will aid in obtaining classification results.

1.1 Physical applications

After their introduction [1–3], Lie colour algebras occasionally found various applications in

(for example): de Sitter spaces [8–10], quasispin [11], strings [12], extensions of Poincaré
1
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algebras [13,14], double field theories [15] and mixed tensors [16,17]. Despite these initial works,

applications of colour algebras remained limited until recently.

In 2016, it was discovered that two of the symmetry algebras of the free Lévy-Leblond

equation in (1 + d)-dimensions for d = 1, 2, 3 were Z2 × Z2-graded Lie colour algebras [4, 5].

Lévy-Leblond [18] originally obtained his equation as a ‘square root’ of the (1 + 3)-dimensional

Schrödinger equation and showed that it could also be obtained as a non-relativistic limit of

the Dirac equation. The Lévy-Leblond equation can be generalised as a square root of a heat

equation or Schrödinger equation in arbitrary spacial dimensions. That Lie colour algebras

appear in such an important equation highlights the potential physical utility of Lie colour

algebras. Partly due to the work in [4, 5], there has recently been increased research activity in

examining the physical applications of Lie colour algebras. Such research has been focused on

two main areas: parastatistics and Z2 × Z2-graded quantum mechanics.

Parastatistics was first introduced by Green in [19], and replaces the ordinary particle

statistics relations with nested (anti)commutation relations. Parastatistics was connected with

Z2 × Z2-graded algebras in [20, 21] and this connection was further studied in [22–24]. Certain

parastatistics relations were identified as isomorphic to a Z2 × Z2-graded colour version of osp

in [25] and Fock spaces for this algebra were constructed in [26]. It was recently shown that the

presence of Z2 × Z2-graded parabosons and parafermions is experimentally testable [27,28].

On the other hand, a simple Z2×Z2-graded quantum mechanical model was introduced in [29]

based on a supersymmetric model in [30]. A theory of Z2 × Z2-graded classical mechanics was

subsequently introduced in [31] based on a Lagrangian construction, and a canonical quantization

procedure was developed in [32]. The development of Zn2 -manifolds (see e.g. [33–37]) allowed

for the study of Zn2 -graded supersymmetry on Zn2 -superspace [38–41]. Recent work includes

extending these systems [42–45], examining integrability [46] and bosonisation [47].

1.2 Mathematical structure

There has been continued interest in the mathematical structure of Lie colour algebras. A useful

technique is that of discolouration, which yields a bijection between the class of Lie colour

algebras and the class of Lie superalgebras (without colour). This bijection preserves much of

the important structure, such as subalgebras, ideals and subrepresentations. Discolouration was

introduced for Zn2 -gradings in [1], and was soon generalised [6] to grading by any finitely generated

abelian group. Discolouration was used in [6] to prove Ado’s theorem for Lie colour algebras

(every finite-dimensional Lie colour algebra has a faithful finite-dimensional representation).

Discolouration was expressed differently in [48], with the introduction of so-called Klein

operators which lie outside the universal enveloping algebra of the colour algebra. It has since

been shown that these Klein operators can be expressed as members of algebraic extensions

of the universal enveloping algebras for a colour version of gl [49] or for the non-coloured

supersymmetric gl(m|n) [50].
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Various works have focused on classifying Lie colour algebras. Three-dimensional [51] and

four-dimensional [52] Lie colour algebras (satisfying certain properties) have been classified.

Simple Z2 × Z2-graded Lie colour algebras were classified in [53] using discolouration.

Attention has also been paid to the representation theory of Lie colour algebras. For example,

the representation theories of the colour versions of the following algebras have been examined:

gl, sl, osp [54, 55], the Lie algebra for the group of plane motions [56], the Heisenberg Lie

algebra [57], super Schrödinger algebras [58] and a supersymmetry algebra [7]. In addition,

discolouration extends to representations, and it is explicitly shown in [50] how the irreducible

covariant representations of gl(m|n) can be lifted to representations of the colour version of gl.

Just like the superalgebra gl(m|n), not every representation of the colour version of gl will be

completely reducible. However, a Lie colour algebra will have the property that every finite

dimensional representation is completely reducible if its discolouration also has this property [59].

1.3 Outline of the thesis

In Chapter 2 we provide the basic definitions for Lie colour algebras, their representations

and related concepts. We prove some isomorphism theorems and the Jordan–Hölder theorem

for graded representations, which we need for Chapter 4. We then describe the process of

discolouration.

In Chapter 3, we introduce the Lévy-Leblond equation. We use discolouration to deter-

mine that the two Z2 × Z2-graded symmetry algebras in [4] are isomorphic to osp(1, 0|2, 0)⊕
osp(1, 0|0, 2) and osp(1, 0|0, 2)⊕ osp(1, 1|2, 0). Inspired by the work in [4], we discover a new

Z3
2-graded symmetry algebra for the Lévy-Leblond equation. We show that this Z3

2-graded Lie

colour algebra is fundamental to the Lévy-Leblond equation: solutions to the Lévy-Leblond

equation can be expressed in terms of simultaneous eigenstates of two of the elements of this

algebra.

We show, in Chapter 4, that the finite-dimensional irreducible representations of Lie colour

algebras can be derived from the finite-dimensional irreducible representations of their dis-

colourations. Discolouration does not make this a trivial procedure because one might need

to convert between ungraded and graded representations (more generally, between Γ/H- and

Γ-graded representations for H ≤ Γ abelian groups). To perform this conversion, we may need

to increase the dimension of the representation and then quotient out a maximal submodule. In

the case of a Zn2 -grading, we prove a stronger result: the above procedure is a bijection between

the ungraded and graded representations (up to some weak notions of equivalence). As an

example, we find all the finite-dimensional irreducible representations of a colour version of sl2.

In Appendix A.1, we show that the Clifford algebra for the (1 + 1)-dimensional Lévy-Leblond

equation has a Z2 × Z2-grading, which may provide a partial explanation for the appearance of

Z2 × Z2-graded symmetry.





Chapter 2

Colour Algebras

Lie colour algebras are a natural generalisation of Lie superalgebras. Recall that a Lie superal-

gebra is a Z2-graded vector space g = g0 ⊕ g1 equipped with a bracket J·, ·K : g× g→ g. Within

an associative algebra, this bracket can be realised as

Jx, yK = xy − (−1)α·βyx

for x ∈ gα, y ∈ gβ where α, β ∈ Z2. The utility of a Lie superalgebra is that it can realise both

commutation and anticommutation relations.

A Lie colour algebra generalises the notion of a Lie superalgebra to grading by some abelian

group Γ (instead of just Z2). If g is a Lie colour algebra, then g is a Γ-graded vector space

g =
⊕

γ∈Γ gγ and the bracket can be realised as

Jx, yK = xy − ε(α, β)yx

for x ∈ gα, y ∈ gβ where α, β ∈ Γ. Here, ε : g× g→ F (where F is the field of scalars) is called

a commutation factor and, as we will soon see, must satisfy certain properties.

Many of the important structures and theorems of Lie superalgebras can be generalised

to Lie colour algebras. In this section, we show how to define the following: Z2 × Z2-graded

colour versions of the matrix algebras gl, sl and osp; homomorphisms; graded and ungraded

representations; irreducible representations; and quotient representations. We also prove some

isomorphism theorems for graded representations, which we use to prove the Jordan–Hölder

Theorem.

We finish this chapter with an explanation of how to discolour a Lie colour algebra to obtain

a non-colour graded Lie superalgebra. This discoloured Lie superalgebra retains many of the

properties of the original Lie colour algebra. We also show how discolouration can be extended

to graded representations.
5
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2.1 Definitions

For the definitions and examples in this section, we follow [6]. Let F be a field with characteristic

different from 2 and 3 and let Γ be an (additive) abelian group.

Definition 2.1.1. A commutation factor (or antisymmetric bicharacter, or phase function) is a

map ε : Γ× Γ→ F× such that

ε(α, β)ε(β, α) = 1

ε(α, β + γ) = ε(α, β)ε(α, γ)

ε(α + β, γ) = ε(α, γ)ε(β, γ)

for all α, β, γ ∈ Γ.

Definition 2.1.2. Given a commutation factor ε, a Lie colour algebra is a vector space g (over

F) endowed with a bracket J·, ·K, which satisfies

g =
⊕
γ∈Γ

gγ,

Jgα, gβK ⊆ gα+β

Jx, yK = −ε(α, β)Jy, xK

JJx, yK, zK = Jx, Jy, zKK− ε(α, β)Jy, Jx, zKK

for x ∈ gα, y ∈ gβ, z ∈ gγ where α, β, γ ∈ Γ. Elements of gα are called homogeneous elements

(of degree α).

Example 2.1.3. If A =
⊕

α∈ΓAα is an associative algebra such that AαAβ ⊆ Aα+β then A can

be given the structure of a Lie colour algebra with bracket

Jx, yK = xy − ε(α, β)yx, x ∈ Aα, y ∈ Aβ.

Example 2.1.4. A Lie superalgebra has Γ = Z2 with commutation factor

ε(α, β) = (−1)α·β

(here, α · β denotes integer multiplication of α, β ∈ Z2 = {0, 1} rather than denoting the group

operation). For a Lie superalgebra, the homogeneous elements of degree 0 (resp. of degree 1)

are called even elements (resp. odd elements).

Example 2.1.5. Let Γ = Z2 × Z2. For a group element α ∈ Z2 × Z2, we will use a simplified

notation in which α = α1α2, so that Z2 × Z2 = {00, 01, 10, 11}. A Z2 × Z2-graded colour Lie

algebra has commutation factor

ε(α1α2, β1β2) = (−1)α1·β2−α2·β1 .
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A Z2 × Z2-graded colour Lie superalgebra has commutation factor

ε(α1α2, β1β2) = (−1)α1·β1+α2·β2

(cf. [2]).

Note that every Lie colour algebra g has a natural Z2-grading, g = g0 ⊕ g1 given by

g0 =
⊕
γ∈Γ0

gγ, g1 =
⊕
γ∈Γ1

gγ.

where

Γ0 = {γ ∈ Γ | ε(γ, γ) = 1} and Γ1 = {γ ∈ Γ | ε(γ, γ) 6= 1}.

Either Γ0 = Γ or Γ0 is a subgroup of Γ with index 2 [6]. However, despite this Z2-grading, a Lie

colour algebra is not (in general) merely a Lie superalgebra. The difference lies in when the

bracket is realised as a commutator or anticommutator (if it even is realised as one of these).

Comparing Examples 2.1.4 and 2.1.5 should make this distinction clear.

2.2 Matrix algebras

Concrete examples of Lie colour algebras can be realised using matrices. In this section, we will

present the definitions of Z2 × Z2-graded matrix algebras as they appear in [2] (though we use

a different convention on the order of the Z2 × Z2-graded sectors).

We can give a Z2 × Z2-grading to Mn(C) (the space of n × n matrices over C) for n =

m1 +m2 + n1 + n2 as follows:

00 11 01 10

11 00 10 01

01 10 00 11

10 01 11 00





m1 m2 n1 n2

m1

m2

n1

n2

where each block has dimensions indicated by the row and column labels (e.g. the top right

block has dimensions m1 × n2). The 00-sector of Mn(C) then contains the n × n matrices

whose entries are zero in every block except the ones labelled by 00 in the above matrix. The

assignment of the other sectors is similar. We define a bracket J·, ·K on Mn(C) by

JA,BK = AB − (−1)α1·β1+α2·β2BA

where α1α2 and β1β2 are the grades of A and B (respectively). We call Mn(C) with this bracket

the general linear Z2 × Z2-graded colour Lie superalgebra and denote it gl(m1,m2|n1, n2). Note

that the general linear Lie superalgebra (with Z2
∼= {00, 01}-grading) is gl(m|n) = gl(m, 0|n, 0).
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For a matrix

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 ∈ gl(m1,m2|n1, n2), (2.1)

we define its super trace to be

strA = trA11 + trA22 − trA33 − trA44.

The special linear Z2 × Z2-graded colour Lie superalgebra, denoted sl(m1,m2|n1, n2), contains

the matrices with supertrace 0,

sl(m1,m2|n1, n2) = {A ∈ gl(m1,m2|n1, n2) | strA = 0}.

The special linear Lie superalgebra (with Z2
∼= {00, 01}-grading) is sl(m|n) = sl(m, 0|n, 0).

Let A ∈ gl(m1,m2|n1, n2) as in (2.1). We define its colour transpose to be

AcT =


AT

11 ξηζAT
21 −ζAT

31 ξζAT
41

ξηζAT
12 AT

22 ξηAT
32 −ηAT

42

ζAT
13 −ξηAT

23 AT
33 ξAT

43

−ξζAT
14 ηAT

24 ξAT
34 AT

44


for a choice of numbers ξ, η, ζ such that ξ2 = η2 = ζ2 = 1.

Let n1 and n2 be even and set

S =

Im1 0

0 Im2

0 In1/2

−In1/2 0

0 In1/2

−In1/2 0




0

0

0

0 0

0

0 0

0 0

.

The orthosymplectic Z2 × Z2-graded colour Lie superalgebra, denoted osp(m1,m2|n1, n2), is

defined as

osp(m1,m2|n1, n2) = {A ∈ gl(m1,m2|n1, n2) | AcTS + SA = 0}.

If we choose ζ = 1 in the definition of the colour transpose, then the orthosymplectic Lie

superalgebra (with Z2
∼= {00, 01}-grading) is osp(m|n) = osp(m, 0|n, 0).

2.3 Homomorphisms and representations

Homomorphisms, representations and related structures for Lie colour algebras are defined

similarly to how they are defined for Lie superalgebras. In this section, we will specifically use

the definitions as they appear in [6].

Let V =
⊕

γ∈Γ Vγ and W =
⊕

γ∈ΓWγ be vector spaces over F.
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Definition 2.3.1. A linear map f : V → W is homogeneous of degree γ ∈ Γ if f(Vα) ⊆ Wα+γ

for all α ∈ Γ.

Definition 2.3.2. For Γ-graded Lie colour algebras g1, g2, a linear map f : g1 → g2 is called a

homomorphism if Jf(x), f(y)K = f(Jx, yK) and f is homogeneous of degree 0. An isomorphism

is a bijective homomorphism.

Example 2.3.3. Let End(V )γ be the space of linear maps V → V that are of degree γ. Define

a vector space Endgr(V ) =
⊕

γ∈Γ End(V )γ and equip it with a colour bracket J·, ·K defined by

Jx, yK = xy − ε(α, β)yx, for x ∈ End(V )α, y ∈ End(V )β

extending to inhomogeneous elements by linearity. Then Endgr(V ) equipped with this bracket

forms a Lie colour algebra, called the general linear Lie colour algebra and denoted gl(V, ε) [6].

Definition 2.3.4. An ungraded representation (resp. Γ-graded representation) of a Lie colour

algebra g on a vector space V is a linear map (resp. homomorphism) ρ : g → gl(V, ε) which

satisfies Jρ(x), ρ(y)K = ρ(Jx, yK). Note that if ρ is a Γ-graded representation then it is of degree

0, so ρ(gα)Vξ ⊆ Vα+ξ. We say that V is a g-module given by ρ (or simply a g-module).

Definition 2.3.5. Let V be a g-module given by ρ. A submodule of V is a graded subspace

U =
⊕

γ∈Γ Uγ (with Uγ ⊆ Vγ) that satisfies ρ(g)U ⊆ U . A non-zero g-module V is called

irreducible if its only submodules are 0 and V . Otherwise, it is called reducible. A representation

ρ is called irreducible (resp. reducible) if its corresponding g-module is.

Definition 2.3.6. Let V and W be g-modules given by ρ and π, respectively. An intertwiner (or

g-module homomorphism) is a linear map f : V → W that is homogeneous of degree 0 ∈ Γ and

f ◦ ρ(x) = π(x) ◦ f for all x ∈ g. We call a bijective intertwiner a (g-module) isomorphism and

we say that V and W are isomorphic, denoted V ∼= W , if there exists a g-module isomorphism

from V to W .

Definition 2.3.7. Let T (g) =
⊕∞

j=0 g
⊗j be the tensor algebra of g and let J(g) be the ideal

generated by elements of the form x⊗y− ε(α, β)y⊗x− Jx, yK for x ∈ gα, y ∈ gβ. The universal

enveloping algebra of g is U(g) = T (g)/J(g). It is standard to omit the tensor product and coset

notation. For example, we write x⊗ y + J(g) as xy.

2.4 Graded quotient modules and isomorphism theorems

Consider a Γ-graded Lie colour algebra g =
⊕

γ∈Γ gγ . Let V =
⊕

γ∈Γ Vγ be a g-module given by

ρ and U =
⊕

γ∈Γ Uγ a submodule of V (so that Uγ ⊆ Vγ).

Definition 2.4.1. The graded quotient module of V by U , denoted V/U , is a direct sum of

quotient vector spaces
⊕

γ∈Γ Vγ/Uγ with g-module structure given by π : g→ gl(V/U, ε) defined

by

π(x)(v + Uξ) = ρ(x)v + Uα+ξ for x ∈ gα, v ∈ Vξ.
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Proposition 2.4.2. The above definition of π is a well-defined representation.

Proof. Suppose v1 + Uξ = v2 + Uξ. Then v1 − v2 ∈ Uξ, so ρ(x)(v1 − v2) ∈ Uα+ξ and hence

ρ(x)v1 + Uα+ξ = ρ(x)v2 + Uα+ξ, showing that π is well-defined.

That π is a linear map g→ End(V/U) for which Jπ(x), π(y)K = π(Jx, yK) follows from the fact

that ρ is a linear map for which Jρ(x), ρ(y)K = ρ(Jx, yK). Moreover, π(gα)(Vξ/Uξ) ⊆ Vα+ξ/Uα+ξ

by definition, so π is a representation g→ gl(V/U, ε).

Definition 2.4.3. We call U a maximal submodule of V if there does not exist a submodule U ′

of V such that U ′ 6= U, U ′ 6= V and U ⊂ U ′ ⊂ V .

For our purposes, we are often interested in submodules U for which V/U is irreducible. In

fact, V/U is irreducible if and only if U is a maximal submodule of V .

Facts which are supremely useful in the study of algebra are the isomorphism theorems. These

isomorphism theorems also hold for g-modules. We only require two of the three isomorphism

theorems (and the Butterfly Lemma)

Theorem 2.4.4 (First Isomorphism Theorem). Let V =
⊕

γ∈Γ Vγ and W =
⊕

γ∈ΓWγ be

g-modules given by representations ρ and π, respectively. Let f : V → W be an intertwiner.

Then, ker f is a submodule of V , im f is a submodule of W and im f ∼= V/ ker f

Proof. We know that ker f is a vector space. Let (ker f)γ = (ker f) ∩ Vγ for all γ ∈ Γ. Then

ker f =
⊕

γ∈Γ(ker f)γ. Let k ∈ ker f and x ∈ g. Since f is an intertwiner, f(ρ(x)k) =

π(x)f(k) = 0, so ρ(x)k ∈ ker f . Thus, ker f is a submodule of V .

We know that im f is a vector space. Let (im f)γ = (im f) ∩ Wγ for all γ ∈ Γ. Then

im f =
⊕

γ∈Γ(im f)γ. Let w ∈ im f and x ∈ g. Then w = f(v) for some v ∈ V . Since f is an

intertwiner, π(x)w = (π(x))f(v) = f(ρ(x)v) ∈ im f . Thus, im f is a submodule of W .

Now, define a map Φ: V/ ker f → im f by

Φ(v + (ker f)ξ) = f(v)

for v ∈ Vξ and extending to inhomogeneous elements by linearity. We claim that Φ is a g-module

isomorphism. First, the map Φ is well-defined; indeed, if v1 + (ker f)ξ = v2 + (ker f)ξ then

v1−v2 ∈ (ker f)ξ which implies f(v1−v2) = 0 and hence f(v1) = f(v2). Repeating the preceding

argument in reverse proves injectivity. Surjectivity is obvious, and linearity follows immediately

from the linearity of f . The map Φ is homogeneous of degree 0 because f is. Finally, Φ is an

intertwiner: for v ∈ Vξ and x ∈ gα,

Φ(ρ(x)v + (ker f)α+ξ) = f(ρ(x)v)

= π(x)f(v)

= π(x)Φ(v + (ker f)ξ).
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Theorem 2.4.5 (Second Isomorphism Theorem). If U =
⊕

γ∈Γ Uγ and U ′ =
⊕

γ∈Γ U
′
γ are

submodules of a g-module V =
⊕

γ∈Γ Vγ, then

U ′/(U ′ ∩ U) ∼= (U ′ + U)/U.

Proof. It is not difficult to verify that U ′ ∩ U and U ′ + U are both submodules of V . Let

f : V → V/U be a function defined by f(v) = v+Uξ for v ∈ Vξ and extending to inhomogeneous

elements by linearity. Observe that ker f = U . Now consider the restriction f |U ′ . We have that

ker f |U ′ = U ∩ U ′ and

im f |U ′ =
⊕
γ∈Γ

{u′ + Uγ | u′ ∈ U ′γ} =
⊕
γ∈Γ

{u′ + u+ Uγ | u′ ∈ U ′γ, u ∈ Uγ} = (U ′ + U)/U.

Applying the First Isomorphism Theorem completes the proof.

Lemma 2.4.6 (Zassenhaus Butterfly Lemma). Let V be a g-module and U,W,U ′,W ′ submodules

of V such that U ⊆ W and U ′ ⊆ W ′. Then,

(U + (W ∩W ′))/(U + (W ∩ U ′)) ∼= (U ′ + (W ∩W ′))/(U ′ + (U ∩W ′)).

Proof. The Butterfly Lemma follows from the Second Isomorphism Theorem in exactly the

same way as for modules over rings (see e.g. [60, Theorem 4.7]).

2.5 Composition Series and the Jordan–Hölder Theorem

Let V be a g-module. If g were a semisimple Lie algebra and V were finite-dimensional, then V

would be the direct sum of irreducible modules (by Weyl’s Theorem). This is a very useful fact

for describing the structure of g-modules. In cases where Weyl’s Theorem does not hold, we

can sometimes use irreducible submodules to describe the structure of V via composition series.

Definition 2.5.1. Consider a finite chain of submodules of V :

V = V 0 ⊇ V 1 ⊇ · · · ⊇ V r = 0.

A refinement of this chain is another finite chain

V = U0 ⊇ U1 ⊇ · · · ⊇ U s = 0

such that the multiset {V 0, V 1, . . . , V r} is contained in the multiset {U0, U1, . . . , U r}.

Definition 2.5.2. Two finite chains

V = V 0 ⊇ V 1 ⊇ · · · ⊇ V r = 0. and V = U0 ⊇ U1 ⊇ · · · ⊇ U s = 0

are equivalent if r = s and there exists a permutation p on {0, . . . , r − 1} such that V j/V j+1 ∼=
Up(j)/Up(j)+1.
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Theorem 2.5.3 (Schreier Refinement Theorem). Let V be a g-module. For any two finite chains

of submodules, there exists a refinement of each such that the two refinements are equivalent.

Definition 2.5.4. A composition series for V is a finite chain of submodules

V = V 0 ⊇ V 1 ⊇ · · · ⊇ V r = 0

such that V i/V i+1 is irreducible for each i = 0, . . . , r − 1. The quotients V i/V i+1 are called

composition factors.

Theorem 2.5.5 (Jordan–Hölder). Let V be a g-module. Any two composition series for V are

equivalent.

The proof of the Schreier Refinement Theorem follows from the Butterfly Lemma in exactly

the same way as for modules over rings (see e.g. [60, Theorem 5.7]). The Jordan–Hölder Theorem

follows from the Schreier Refinement theorem [60, Theorem 5.8].

2.6 Discolouring Lie colour algebras

Scheunert [6] gave a bijection between Lie colour algebras and graded Lie superalgebras

and their representations (this bijection is said to discolour the Lie colour algebra and their

representations). This bijection has many nice properties; for example, it preserves subalgebras,

ideals and subrepresentations. To compute the image of a colour algebra under this bijection,

we deform the commutation factor using a multiplier.

Definition 2.6.1. A multiplier (or multiplicative 2-cocycle) is a map σ : Γ × Γ → F× that

satisfies

σ(α, β + γ)σ(β, γ) = σ(α, β)σ(α + β, γ).

for all α, β, γ ∈ Γ.

Given a Lie colour algebra g (with commutation factor ε) and a multiplier σ, we can define

a new bracket J·, ·Kσ by

Jx, yKσ = σ(α, β)Jx, yK, x ∈ gα, y ∈ gβ.

The vector space g equipped with the bracket J·, ·Kσ forms a Lie colour algebra with commutation

factor ε0 given by

ε0(α, β) = ε(α, β)
σ(α, β)

σ(β, α)
α, β ∈ Γ (2.2)

(see [6]). We denote this Lie colour algebra by gσ and (following [59]) we call gσ the cocycle

twist of g.
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Assume that Γ is finitely generated. Then for any Lie colour algebra g with commutation

factor ε, there exists [6] a multiplier σ such that, for ε0 given by (2.2),

ε0(α, β) =

−1 if ε(α, α) 6= 1 and ε(β, β) 6= 1

1 otherwise.
(2.3)

In particular, gσ is a Lie superalgebra with even and odd sectors given by

gσ0 =
⊕
α∈Γ

ε(α,α)=1

gα, gσ1 =
⊕
α∈Γ

ε(α,α) 6=1

gα.

Given the above multiplier σ, the map g 7→ gσ is a bijection between the Lie colour algebras

with commutation factor ε and the Γ-graded Lie superalgebras [6]. As such, we call gσ a

discolouration of g. Discolouration is an invertible procedure, and we will call (gσ)1/σ = g the

recolouration of gσ.

Example 2.6.2. Let g be a Z2 × Z2-graded colour Lie superalgebra. Define σ : (Z2 × Z2) ×
(Z2 × Z2)→ F× by

σ(α, β) = (−1)α1β2

where α = α1α2, β = β1β2 ∈ Z2 × Z2. We claim that σ is a multiplier; indeed,

σ(α, β + γ)σ(β, γ) = (−1)α1(β2+γ2)+β1γ2 = (−1)α1β2+(α1+β1)γ2 = σ(α, β)σ(α + β, γ).

Using (2.2), we find that

ε0(α, β) = (−1)α1β1+α2β2+α1β2−α2β1

= (−1)α1β1+α2β2+α1β2−α2β1(−1)2α2β1

= (−1)(α1+α2)(β1+β2).

(2.4)

Observe that ε(α, α) = (−1)α1α1+α2α2 = (−1)α1+α2 . So ε(α, α) 6= 1 if and only if α1 + α2 = 1

(mod 2). That is, the expression for ε0 in (2.4) agrees with (2.3). Moreover, α1 + α2 (mod 2)

corresponds to the Z2-grade of α in gσ, i.e. if x ∈ gα then x ∈ gσα1+α2
.

Note that there may be many choices for a multiplier which discolours g. However, if F is

algebraically closed and σ1, σ2 are multipliers that give rise to the same commutation factor,

then gσ1 is isomorphic to gσ2 [6].

There is an alternative method of discolouration which works by adding new elements, called

Klein operators, to the universal enveloping algebra. These Klein operators are defined in such

a way that they map the elements of the Lie colour algebra to elements which are isomorphic to

the discoloured algebra defined above (see [48] for details). The advantage of this construction

is that bracket for the discoloured algebra is the same as the original Lie colour algebra; we do

not need to define the new bracket J·, ·Kσ.

In [49], it was shown that Klein operators can be expressed as an exponential of elements of

the universal enveloping algebra of gl(m1,m2|n1, n2). Note carefully that the Klein operators
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of [49] are elements of an algebraic extension of the universal enveloping algebra (one which

allows exponentiation/infinite sums of elements) and are not members of the universal enveloping

algebra itself. In [50] this construction was simplified by expressing the Klein operators in an

algebraic extension of the universal enveloping algebra of gl(m|n) where m = m1 + m2, n =

n1 + n2.

Another advantage, then, of using Klein operators is that the discolouration procedure can

be expressed in terms of the generators of one of the algebras of interest. However, for the

remainder of this thesis we will use the original discolouration process of [6] outlined in this

section.

2.7 Discolouring representations

Given a graded representation ρ : g→ gl(V, ε) and a multiplier σ : Γ× Γ→ F×, we can define

its cocycle twist ρσ to be the graded representation of gσ given by

ρσ(x)v = σ(α, ξ)ρ(x)v, for x ∈ gα, v ∈ Vξ.

In particular, if σ is a multiplier which discolours g then the representations of g are in bijection

with the graded representations of the corresponding discoloured Γ-graded Lie superalgebra [6].

Thus, the representation theory of Lie colour algebras can be completely derived from that of

Γ-graded Lie superalgebras. The Klein operator version of discolouration similarly extends to

representations [48], and an explicit example of this is shown in [50].

The Z2-graded irreducible representations of Lie superalgebras have been well studied.

However, these results cannot be immediately applied to find irreducible Γ-graded representations.

For instance, it might not be possible to find a Γ-grading for a Z2-graded representation. On

the other hand, there might be an irreducible Γ-graded representation that becomes reducible

when only considering the Z2-grading.



Chapter 3

Symmetries of the Lévy-Leblond

equation

The Lévy-Leblond equation takes its inspiration from the Dirac equation, which describes a

relativistic spin 1/2 particle. To obtain his equation, Dirac [61] took a ‘square root’ of the

Klein–Gordon equation in order to replace the second-order time derivative with a first-order

derivative. This square root required the introduction of gamma matrices (which generate

Clifford algebras) and naturally led to the introduction of spin into the equation.

By using gamma matrices in a similar way, Lévy-Leblond obtained his equation as a ‘square

root’ of the Schrödinger equation. Lévy-Leblond showed [18] that, just as the Dirac equation

is invariant under the Poincaré group, his equation is invariant under the Galilei group. He

also showed that his equation predicts the correct value for the magnetic moment of a spin 1/2

particle and that his equation can be obtained as the non-relativistic limit of the Dirac equation.

Remarkably, the Lévy-Leblond equation has symmetry algebras which are Z2 × Z2-graded

colour Lie superalgebras [4]. Despite the recent activity surrounding colour algebras, the

Lévy-Leblond equation has received little attention since the first two papers [4,5]. Similarly,

despite its great potential utility, discolouration has received little use in recent papers.

As an attempt to fill these gaps in the literature, we use discolouration to classify the

symmetry algebras in [4]. In doing so, we find that these algebras are isomorphic to osp(1, 0|2, 0)⊕
osp(1, 0|0, 2) and osp(1, 0|0, 2)⊕ osp(1, 1|2, 0).

Inspired by the work in [4], we also search for more Lie colour algebra symmetries of the

(1 + 1)-dimensional Lévy-Leblond equation with free potential. We examine a time-independent

version of the Lévy-Leblond equation as an eigenvalue-type problem and find five linearly

independent operators which leave the eigenspaces invariant: the identity, a gamma matrix

multiplied by the parity operator, the Schrödinger Hamiltonian, and two different ‘square roots’

of the Schrödinger Hamiltonian. These five operators close to form a Z3
2-graded Lie colour

algebra. We show that this Z3
2-graded Lie colour algebra is fundamental to the Lévy-Leblond

15
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equation: solutions to the Lévy-Leblond equation can be expressed in terms of simultaneous

eigenstates of the two ‘square roots’ of the Schrödinger Hamiltonian. We use this fact to solve

the Lévy-Leblond equation in this simple case.

3.1 The Lévy-Leblond equation and gamma matrices

A (generalised) Lévy-Leblond equation is a first-order differential equation that is a square root

of the heat or Schrödinger equation in (1 + d)-dimensions [4]. Let t be the time coordinate

and xj be the j-th spacial coordinate. Throughout this chapter, we will use the notation

x = (x1, . . . , xd) and ∂t = ∂
∂t

, ∂j = ∂
∂xj

.For the Lévy-Leblond equation with free potential, we

want to find an operator Ω (which we shall call a Lévy-Leblond operator) such that

Ω2 = λ∂t + ∆

where λ ∈ C is an arbitrary constant and ∆ =
∑

j ∂
2
j is the Laplacian. If λ is a negative real

number, then the partial differential equation induced by Ω2 (i.e. Ω2Ψ(t,x) = 0) becomes the

heat equation, and if λ = iβ for β ∈ R>0 (in particular, β = 2m/~ where m is mass and ~ is

the reduced Planck constant) then the partial differential equation induced by Ω2 becomes the

Schrödinger equation.

The goal of the Lévy-Leblond operator is to reduce a second-order differential equation (heat

or Schrödinger equation) to a first-order equation. We will assume that Ω has the form

Ω = γ+∂t + γ−λ+ γj∂j (3.1)

where Einstein summation convention is used, and the coefficients γ+, γ−, γ
j (j = 1, . . . , d) are

yet to be determined. To have Ω2 = λ∂t + ∆, the following anti-commutation relations must be

satisfied:
{γ±, γ±} = 0, {γ+, γ−} = 1,{
γ±, γ

j
}

= 0,
{
γj, γk

}
= 2δjk,

(3.2)

where δjk is the Kronecker delta. Similar to the Dirac equation, we find that these anti-

commutation relations cannot be realised using numbers, and we must instead use gamma

matrices.

Definition 3.1.1 ( [62, Chapter 14]). The Clifford algebra C`p,q(R) is the freest algebra (over

R) generated by gamma matrices γ̃j, (j = 0, . . . , p+ q − 1) which satisfy
{
γ̃j, γ̃k

}
= 2ηjk where

the ηjk are entries of a symmetric matrix associated with a bilinear form of signature (p, q).

More precisely, consider the tensor algebra T (V ) for V = span{γj | j = 0, . . . , p+ q− 1} and let

J be the ideal generated by elements of the form γ̃j γ̃k + γ̃kγ̃j − 2ηjk1. Then C`p,q(R) = T (V )/J .

For simplicity, we will work in a basis such that

ηjk =

δjk if j < p,

−δjk if j ≥ p.
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The complexification of C`p,q(R) is C`p,q(R)⊗ C.

Remark 3.1.2. For (p, q) = (1, 3), the symmetric bilinear form ηjk is the same bilinear form on

Minkowski space [62, Chapter 14].

The gamma matrices in Definition 3.1.1 are used directly in the Dirac equation (we will discuss

the relationship between the Dirac equation and the Lévy-Leblond equation in Section 3.2).

Similar to the Dirac equation, we can view the gamma matrices of (3.2) as elements of some

Clifford algebra. The most general Clifford algebra required is C`2,d(R)⊗ C, but we will argue

in Section 3.2 that C`1,d(R)⊗ C is more suitable when d is odd.

Note that Clifford algebras can be given the structure of a Lie colour algebra [63]. Since

C`1,1(R)⊗C can be given a Z2×Z2-graded colour algebra structure (see Appendix A.1), in some

sense it is not surprising that Z2×Z2-graded symmetry algebras appear in the (1+1)-dimensional

Lévy-Leblond.

Remark 3.1.3. We could work entirely with real matrices, and realise the imaginary unit as a

real matrix J which commutes with all the gamma matrices and squares to the negative identity

matrix. This would allow us to realise the gamma matrices as a representation of a real Clifford

algebra (see Definition 3.1.1). However, for simplicity, we will allow our gamma matrices to be

over the complex numbers.

To actually solve the Lévy-Leblond equation, we would need to choose a specific matrix

representation of the corresponding Clifford algebra (though many of the properties that we

will study are representation independent). This makes the Lévy-Leblond equation a matrix

differential equation. In particular, if we realise relations (3.2) using n×n-dimensional matrices,

the corresponding Hilbert space of the quantum system is L2(R) ⊗ Cn, whose elements we

interpret as n-component vectors of functions. This interpretation provides a natural action of

the Lévy-Leblond operator on the Hilbert space. If Ψ(t,x) is a solution to the free Lévy-Leblond

equation (i.e. ΩΨ(t,x) = 0), then we also have Ω2Ψ(t,x) = 0, so each component of Ψ(t,x) will

be a solution to the Schrödinger equation.

3.2 Non-relativistic limit of the Dirac equation

The Lévy-Leblond equation (corresponding to the Schrödinger equation) can be obtained as the

non-relativistic limit of the Dirac equation. Recall that the Dirac equation is

(γ̃0i~∂t + γ̃ji~∂j −mc)Ψ(t,x) = 0

and is a relativistic equation describing a free spin 1/2 particle (see e.g. [62, Chapter 10]).

The gamma matrices appearing in the Dirac equation satisfy
{
γ̃j, γ̃k

}
= 2ηjk, (j, k = 0, . . . , d),

where ηjk is a symmetric bilinear form with signature (1, d):

ηjk =

δjk if j = 0,

−δjk otherwise.
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We can also write a time-independent version of the Dirac equation, by replacing i~∂t with the

total energy E (mc2+ kinetic energy):

(γ̃0E + γ̃ji~∂j −mc)Ψ(x) = 0. (3.3)

From now on, we will work in natural units, c = ~ = 1.

For the moment, we shall restrict ourselves to (1 + 3)-dimensions and choose the Dirac

representation of the gamma matrices in 4× 4 matrices:

γ̃0 =

(
I 0

0 −I

)
, γ̃j =

(
0 σj

−σj 0

)
where σj are the Pauli matrices and I is the identity. In this representation, the Dirac equation

becomes a coupled differential equation (E−m)ϕ+ σji∂jχ = 0

(−E−m)χ− σji∂jϕ = 0
(3.4)

where Ψ =

(
ϕ

χ

)
is a solution to the Dirac equation. Lévy-Leblond discovered [18] that taking

E = E + m (where E the non-relativistic kinetic energy), and assuming E � m, we can

approximate (3.4) by  Eϕ+ σji∂jχ = 0

−2mχ− σji∂jϕ = 0.
(3.5)

If ϕ and χ solve (3.5), then Ψ =

(
χ

ϕ

)
is a solution to the Lévy-Leblond equation, with

γ+ =

(
0 I

0 0

)
, γ− =

(
0 0

I 0

)
, γj =

(
σj 0

0 −σj

)
.

That is, the Lévy-Leblond equation is the non-relativistic limit of the Dirac equation.

We can generalise the above process for all odd space dimensions in a representation

independent way. Consider the time-independent Dirac equation in (1 + d)-dimensions, (3.3)

and assume d is odd. Let

γ̃chir = i(d+3)d/2

d∏
j=0

γ̃j.

Since the γ̃j anticommute, we have that γ̃j γ̃chir = (−1)dγ̃chirγ̃j, (j = 0, . . . , d). Assuming that d

is odd, we have that
{
γ̃j, γ̃chir

}
= 0. Additionally,

γ̃chir = i(d+3)d/2(−1)d+(d−1)+···+1

d∏
j=0

γ̃d−j = i(d+3)d/2(−1)(d+1)d/2

d∏
j=0

γ̃d−j.

Therefore, (γ̃chir)2 = (i2)(d+3)d/2(−1)(d+1)d/2+dI = I. In particular, γ̃chir is invertible so Ψ is a

solution to the time-independent Dirac equation if and only if

γ̃chir(γ̃0E + γ̃ji∂j −m)Ψ(x) = 0. (3.6)
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Take the non-relativistic limit by setting E = E +m and assuming E � m. We can compute

0 = γ̃chir(γ̃0E + γ̃ji∂j −m)Ψ(x)

= (γ̃chirγ̃0(E +m) + γ̃chirγ̃ji∂j − γ̃chirm)Ψ(x)

=

(
1

2
(γ̃chir + γ̃chirγ̃0)E − 1

2
(γ̃chir − γ̃chirγ̃0)(E + 2m) + γ̃chirγ̃ji∂j

)
Ψ(x)

≈ (γ+E − γ−2m+ γji∂j)Ψ(x) (3.7)

where

γ± =
1

2
(γ̃chir ± γ̃chirγ̃0), γj = γ̃chirγ̃j, (j = 1, . . . , d). (3.8)

It is easily verified that γ±, γ
j satisfy the anti-commutation relations (3.2). We can now use

the time independent Lévy-Leblond equation (3.7) to derive a time-dependent Lévy-Leblond

equation by replacing E with i∂t:

(γ+∂t + γ−i2m+ γj∂j)Ψ(t,x) = 0

which has the desired form (3.1).

It is important to note that the realisation in (3.8) satisfies relations (such as γ+γ
j+γ−γ

j = γj)

that are not satisfied by every representation of (3.2). Despite being less general, the realisation

in (3.8) has the advantage that the gamma matrices can be defined in terms of a bilinear form

with signature (1, d), representing 1 time dimension and d spacial dimensions.

3.3 Z2 × Z2-graded symmetry algebras

In [4], the authors introduced two Z2×Z2-graded colour Lie superalgebras consisting of symmetry

operators of the 1 + 1-dimensional Lévy-Leblond square root of the free heat equation.

These Z2×Z2-graded colour Lie superalgebras were constructed from three different osp(1|2)

superalgebras (which all have a Z2-grading). We will quickly summarise the structure of each

superalgebra. For simplicity, we will only provide the generators for two of these algebras, with

the remaining basis elements defined by (anti)commutation relations.

The first osp(1|2) algebra is generated by two elements which span the odd sector, P+ 1
2
, P− 1

2

defined as

P+ 1
2

= I∂1 P− 1
2

= I

(
t∂1 −

λ

2
x1

)
− 1

2
γ+.

The even sector of this is then spanned by P0, P1, P−1, defined by the anticommutation relations

P(a+b)/2 =
{
Pa/2, Pb/2

}
(a, b = ±1).

In addition to the above relations, this superalgebra also satisfies the following

[P0, Ps] = 2sλPs

(
s = 0,±1

2
,±1

)
[P1, P−1] = −4λP0[
P±1, P∓ 1

2

]
= ∓2λP± 1

2
.

(3.9)
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The construction of the second osp(1|2) superalgebra is similar. It is generated by two

elements which span the odd sector, Ω+ 1
2
, Ω− 1

2
defined as

Ω+ 1
2

= Ω Ω− 1
2

= tΩ

where Ω = γ+∂t + γ−λ+ γ1∂1 is the Lévy-Leblond operator. The even sector is then spanned

by Ω0,Ω+1,Ω−1 defined by the anticommutation relations

Ω(a+b)/2 =
{

Ωa/2,Ωb/2

}
(a, b = ±1).

In addition to the above relations, this superalgebra also satisfies

[Ω0,Ωs] = −2sλΩs

(
s = 0,±1

2
,±1

)
[Ω1,Ω−1] = 4λΩ0[

Ω±1,Ω∓ 1
2

]
= ±2λΩ± 1

2
.

(3.10)

The third osp(1|2) algebra has an even sector spanned by operators D,H,K and an odd

sector spanned by operators Q+ 1
2
, Q− 1

2
defined by

H = I∂t

D = −
(
I

(
t∂1 +

1

2
x1∂1 +

1

2

)
+

1

4
γ1

)
K = −

(
I

(
t2∂t + tx1∂1 −

λ

4
x2

1 + t

)
− 1

2
γ+x1 +

1

2
γ1t

)
Q+ 1

2
=

1√
λ

(γ+∂t − λγ−)

Q− 1
2

=
1√
λ

(
γ+

(
t∂t + x1∂1 +

1

2

)
− γ−λt− γ1λx1

2

)
These operators satisfy the following relations{

Q+ 1
2
, Q+ 1

2

}
= −2H

{
Q− 1

2
, Q− 1

2

}
= 2K{

Q+ 1
2
, Q− 1

2

}
= 2D

[
D,Q± 1

2

]
= ±1

2
Q± 1

2[
H,Q− 1

2

]
= Q+ 1

2

[
K,Q+ 1

2

]
= Q− 1

2

[D,H] = H [D,K] = −K

[H,K] = 2D

(3.11)

Note that the above (anti)commutation relations depend on the following relations for the

gamma matrices:

(γ±)2 = 0, (γ1)2 = I, γ±γ∓ =
1

2
(I ± γ1), γ1γ± = ±γ± = −γ±γ1 (3.12)

(see [4, Section 4]). Recalling that we are working with the equation in (1 + 1)-dimensions, these

relations can be derived from the gamma matrices for the Dirac equation (3.8) (but not from

the more general Lévy-Leblond relations in (3.2)).
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In [4], two Z2×Z2-graded Lie superalgebras were constructed using the above three osp(1|2)

algebras. In the remainder of this section, we discolour the two Z2 × Z2-graded colour Lie

superalgebras, classify the corresponding Z2-graded superalgebra, and then use this information

to identify the original Z2 × Z2-graded superalgebras.

3.3.1 The first Z2 × Z2-graded colour Lie superalgebra

Let GP,Ω be the first Z2 × Z2-graded colour Lie superalgebra in [4], which is generated by the

Ps,Ωs′ operators (for s, s′ = 0,±1
2
,±1). In particular, the graded sectors are

GP,Ω
00 = span{P±1, P0,Ω±1,Ω0}, GP,Ω

01 = span{P± 1
2
}, GP,Ω

10 = span{Ω± 1
2
}, GP,Ω

11 = {0}

and [Ps,Ωs′ ] = 0 for all s, s′ = 0,±1
2
,±1. Therefore, GP,Ω = GP ⊕GΩ, where GP has 00-sector

span{P±1, P0} and 01-sector span{P± 1
2
} (with the 10- and 11-sectors 0-dimensional); and GΩ has

00-sector span{Ω±1,Ω0} and 10-sector span{Ω± 1
2
} (with the 01- and 11-sectors 0-dimensional).

It is clear that GP ∼= osp(1|2) and GΩ ∼= osp(1|2) (provided we choose the Z2 × Z2-grading of

each copy of osp(1|2) correctly). More precisely, GP,Ω = osp(1, 0|2, 0)⊕ osp(1, 0|0, 2).

We have just identified GP,Ω without appealing to discolouration. However, for completeness,

we will show that the discolouration of GP,Ω is (GP,Ω)σ ∼= osp(1|2)⊕ osp(1|2) (where σ(α, β) =

(−1)α1β2). To demonstrate this isomorphism, we will show that Jx, yKσ = Jx, yK for all x, y ∈ GP,Ω.

Indeed, if x ∈ GP,Ω
11 then x = 0 so Jx, yKσ = 0 = Jx, yK; similarly if y ∈ GP,Ω

11 . If x ∈ GP,Ω
10

and y ∈ GP,Ω
01 then Jx, yK = 0 = Jx, yKσ. If x ∈ GP,Ω

α and y ∈ GP,Ω
β with α 6= 10, 11 or

β 6= 01, 11, then σ(α, β) = 1, so Jx, yKσ = Jx, yK by definition. Therefore, Jx, yKσ = Jx, yK for

all x, y ∈ GP,Ω. From this we can deduce that all the relations of (GP,Ω)σ are the same as for

GP,Ω except we have {Ps,Ωs′} instead of [Ps,Ωs′ ] for s, s′ = ±1
2

(but not for s, s′ = 0,±1). This

difference in the relations is due to the fact that, for x ∈ GP,Ω
01 , y ∈ GP,Ω

10 , the bracket Jx, yKσ is

interpreted as an anticommutator (since x and y are both in the odd sector) whereas Jx, yK is

interpreted as a commutator (since ε(01, 10) = 1). Regardless, since JPs,Ωs′K
σ = 0 for all s, s′ =

0,±1
2
,±1, we have that (GP,Ω)σ = (GP )σ ⊕ (GΩ)σ where (GP )σ = span{Ps | s = 0,±1

2
,±1} and

(GΩ)σ = span{Ωs′ | s′ = 0,±1
2
,±1} are both equipped with the discoloured bracket J·, ·Kσ. The

isomorphism (GP,Ω)σ ∼= osp(1|2)⊕ osp(1|2) follows immediately from the fact that the relations

of (GP )σ and the relations of (GΩ)σ both remain unchanged by discolouration, and hence both

are isomorphic to osp(1|2).

3.3.2 Discolouring the second Z2×Z2-graded colour Lie superalgebra

Let G be the second Z2 × Z2-graded colour Lie superalgebra in [4], which is generated by the

H,D,K,Q± 1
2
, Ps (s = 0,±1

2
,±1) operators. The graded sectors are

G00 = span{H,D,K, P±1, P0}, G01 = {P± 1
2
},

G10 = span{Q± 1
2
, X± 1

2
}, G11 = span{X}
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where the operators X, X± 1
2

are defined by

X = ±
[
P± 1

2
, Q∓ 1

2

]
X± 1

2
=
{
X,P± 1

2

}
.

We investigate the structure of the corresponding superalgebra Gσ where σ is the multiplier

σ(α, β) = (−1)α1β2 . We have that the even sector is Gσ
0 = G00 ⊕ G11 and the odd sector is

Gσ
1 = G01 ⊕G10. The (anti)commutation relations in (3.9) and (3.11) remain unchanged in Gσ.

The remaining relations in Gσ are

[D,Ps]
σ = sPs

[
D,X± 1

2

]σ
= ±1

2
X± 1

2

[H,Pm]σ = (1−m)Pm+1

[
H,X− 1

2

]σ
= X 1

2

[K,Pm]σ = (1 +m)Pm−1

[
K,X+ 1

2

]σ
= X− 1

2[
P±1, Q∓ 1

2

]σ
= ±2X± 1

2

[
P±1, X∓ 1

2

]σ
= ∓2λX± 1

2[
P0, X± 1

2

]σ
= ±λX± 1

2

[
P0, Q± 1

2

]σ
= ∓X± 1

2{
P± 1

2
, X∓ 1

2

}σ
= ∓λX

{
P± 1

2
, Q∓ 1

2

}σ
= ±X{

X 1
2
, X− 1

2

}σ
= λP0

{
X± 1

2
, X± 1

2

}σ
= λP±1{

Q± 1
2
, X∓ 1

2

}σ
= −P0

{
Q± 1

2
, X± 1

2

}σ
= −P±1[

X,X± 1
2

]σ
= λP± 1

2

[
H,P− 1

2

]σ
= P 1

2[
K,P+ 1

2

]σ
= P− 1

2

[
X,Q± 1

2

]σ
= −P± 1

2[
X,P± 1

2

]σ
= −X± 1

2

(3.13)

form = 0,±1, s = 0,±1
2
,±1 and λ an arbitrary nonzero real number. All other (anti)commutation

relations vanish. Here, we define [x, y]σ = Jx, yKσ when x ∈ Gσ
0 or y ∈ Gσ

0 , and {x, y}σ = Jx, yKσ

when x, y ∈ Gσ
1 . Note that [·, ·]σ and {·, ·}σ do not necessarily coincide with the commutator

[·, ·] and anticommutator {·, ·}.
The Cartan subalgebra of Gσ is h = span{D,P0, X}. We can then find the corresponding

root system and apply standard classification results to the Lie superalgebra Gσ. In doing so,

we find that Gσ ∼= osp(1|2)⊕ sl(2|1).

Alternatively, let

DP = D − 1

2λ
P0 HP = H +

1

2λ
P1

KP = K − 1

2λ
P−1 QX± 1

2

= Q± 1
2

+
1

λ
X± 1

2

P̃0 =
1

2λ
P0 P̃± = ∓ 1

2λ
P±1

Z =
1

2
√
−λ

X F± = ± 1

2
√
−λ

P± 1
2
± 1

2λ
X± 1

2

F
±

=
1

2
√
−λ

P± 1
2
− 1

2λ
X± 1

2
.
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Note that F±, F
±

are homogeneous elements of the odd sector, even though they are not

homogeneous elements in the original Z2 ×Z2-grading. (We do not need to respect the Z2 ×Z2-

grading in this case since we are examining the discolouration.) It is easily verified that

DP , HP , KP , QX± 1
2

satisfy relations (3.11) under [·, ·]σ and {·, ·}σ. Thus,

span{DP , HP , KP , QX± 1
2

} ∼= osp(1|2).

Additionally, the operators Z, P̃0, P̃
±, F±, F

±
satisfy[

P̃0, P̃
±
]σ

= ±P̃±
[
P̃+, P̃−

]σ
= 2P̃0[

Z, P̃±
]σ

=
[
Z, P̃0

]σ
= 0

[
P̃0, F

±
]σ

= ±1

2
F±[

P̃0, F
±
]σ

= ±1

2
F
±

[
P̃±, F∓

]σ
= −F±[

P̃±, F
∓
]σ

= F
±

[
P̃±, F±

]σ
=
[
P̃±, F

±
]σ

= 0[
Z, F±

]σ
=

1

2
F±

[
Z, F

±
]σ

= −1

2
F
±

{
F±, F±

}σ
=
{
F±, F∓

}σ
= 0

{
F
±
, F
±
}σ

=
{
F
±
, F
∓
}σ

= 0{
F±, F

±
}σ

= P̃±
{
F±, F

∓
}σ

= Z ∓ P̃0

which are commutation relations for sl(2|1). One can also check that the above generators for

osp(1|2) (anti)commute with the generators for sl(2|1), showing that Gσ ∼= osp(1|2)⊕ sl(2|1).

3.3.3 Recolouring the second Z2×Z2-graded colour Lie superalgebra

We can use the structure of Gσ to classify G. As in Section 3.3.1, we can argue that the osp(1|2)

summand is unchanged by discolouration. Therefore, G contains osp(1|2) as a summand (more

precisely, a summand of osp(1, 0|0, 2)). It is known that sl(2|1) ∼= osp(2|2), and that osp(2|2) is

the discolouration of the Z2 × Z2-graded Lie colour algebra osp(1, 1|2, 0) [64]. It turns out that

G ∼= osp(1, 0|0, 2)⊕ osp(1, 1|2, 0).

Recall [65] that osp(2|2) can be realised as matrices of the form
0 −a x1 y1

a 0 x2 y2

−y1 −y2 b c

x1 x2 d −b

 with grading

[
0 1

1 0

]

for a, b, c, d, x1, x2, y1, y2 ∈ C. The bracket on osp(2|2) is given by

JA,BK = AB − (−1)α·βBA

where α, β are the Z2-grade of A,B (respectively).
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For the space of 4× 4 matrices, define a basis {EIJ | I, J = 1, . . . , 4} by (EIJ)ij = δIiδJj. If

we set

P = λ(E4,4 − E3,3) P+1 = 2λE4,3 P−1 = 2λE3,4

P+ 1
2

=
√
λ (E1,3 + E4,1) P− 1

2
=
√
λ (E1,4 − E3,1) X =

√
λ (E1,2 − E2,1)

X+ 1
2

= λ(E2,3 + E4,2) X− 1
2

= λ(E2,4 − E3,2)

then {P, P±1, P± 1
2
, X,X± 1

2
} span osp(2|2) and satisfy relations (3.9) and (3.13) under the

(anti)commutator. (However, note that the above matrix realisation does not act on the original

Hilbert space containing states of the quantum system.)

The above discussion provides an explicit isomorphism between the sl(2|1) factor of Gσ and

osp(2|2). Next, we can recolour osp(2|2).

The osp(2|2) algebra can be turned into a Z2 × Z2-graded algebra as follows:
0 −a x1 y1

a 0 x2 y2

−y1 −y2 b c

x1 x2 d −b

 with grading


00 11 01

11 00 10

01 10 00

 .

If we interpret the matrices of osp(2|2) as a representation acting on a four dimensional

representation space, whose column vectors have the Z2 × Z2-grading
00

11

01

01

 ,

then we can use σ′(α, β) = (−1)α2·β1 to obtain a Z2 × Z2-graded colour Lie superalgebra. The

2-cocycle σ′ multiplies each block of the matrices in osp(2|2) by either +1 or −1 as per
+1 −1 +1

+1 +1 +1

+1 +1 +1

 .
The result forms a Z2 × Z2-graded colour Lie superalgebra with bracket

JA,BK = AB − (−1)α1·β1+α2·β2BA

where α1α2 and β1β2 are the grades of A and B (respectively). This colour superalgebra is

osp(1, 1|2, 0). We have thus shown that G ∼= osp(1, 0|0, 2)⊕ osp(1, 1|2, 0).

Remark 3.3.1. If we choose ξ = η = 1 and ζ = −1 in the definition of colour transpose, then

we can easily verify that osp(1, 1|2, 0) as defined in Section 2.2 is the same as the osp(1, 1|2, 0)

used above.
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3.4 Symmetries of the free Lévy-Leblond equation

Inspired by the symmetry algebras in [4] (see also, Section 3.3), in this section, we wish to

identify the symmetry operators which leave the eigenspaces invariant, and determine if any

Z2 × Z2-graded symmetry appears.

3.4.1 Initial observations

Recall that the (1 + 1)-dimensional Lévy-Leblond equation (for the Schrödinger equation) with

free potential is

(γ+i∂t − γ−β + γ1i∂1)Ψ(t, x1) = 0 (3.14)

where t is the time coordinate and x1 is the first (and only) spacial coordinate. We can choose

to interpret γ−β − γ1i∂1 as a pseudo-Hamiltonian and set up a time-independent version of this

equation:

(γ−β − γ1i∂1)ψ(x1) = γ+Eψ(x1) (3.15)

for some E ∈ C. A difficulty that we encounter with the Lévy-Leblond equation (which we

would not encounter while solving the Dirac equation) is that (γ+)2 = 0 so γ+ is not invertible.

This means that we are forced to leave γ+ on the right-hand side of (3.15).

If ψ(x1) is a solution to the time-independent equation (3.15), then

Ψ(t, x1) = e−iEtψ(x1)

is a solution to the time-dependent equation (3.14).

Let |ψ〉 ≡ ψ(x1) be a solution to the time-independent equation (3.15). By abuse of

terminology, we will call |ψ〉 an eigenstate with eigenvalue γ+E and use associated terminology

(such as eigenspaces).

We can rearrange equation (3.15) to solve for ∂1:

∂1 |ψ〉 = (γ1γ+iE − γ1γ−iβ) |ψ〉

= (γ+iE + γ−iβ) |ψ〉
(3.16)

using relations (3.12). Squaring both sides (noting that ∂1 commutes with the operator on the

right-hand side), we find that

(∂1)2 |ψ〉 = −Eβ |ψ〉 =⇒ − 1

β
(∂1)2 |ψ〉 = E |ψ〉 . (3.17)

Since −(1/β)(∂1)2 is the Hamiltonian for the free Schrödinger equation, we have that |ψ〉 is an

eigenstate for the Schrödinger Hamiltonian. In particular −(1/β)(∂1)
2 is proportional to the

square of the self-adjoint momentum operator −i∂1, and hence is a self-adjoint non-negative

operator. Consequently, its spectrum must be contained in [0,∞) (see e.g. [66, Proposition 9.20]).

That is, E ∈ [0,∞).
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3.4.2 Eigenvalue conditions

We wish to find an operator A that leaves the eigenspaces invariant; that is,

(γ−β − γ1i∂1)A |ψ〉 = γ+EA |ψ〉 (3.18)

for |ψ〉 a solution to the time-independent equation (3.15). Equation (3.16) shows that the

operator ∂1 can be expressed in terms of gamma matrices when acting on an eigenspace.

Therefore, if we only consider the action on an eigenspace, A does not need to contain any

differential operators. So the general form of A (restricted to an eigenspace) is

A = cI(x1)I + c+(x1)γ+ + c−(x1)γ− + c1(x1)γ1 (3.19)

for some complex-valued functions cI , c+, c−, c1. For simplicity, we will assume that these

functions are differentiable. (The fact that this general form of A does not contain any differential

operators is unique to the (1 + 1)-dimensional case.) We then substitute the general A in (3.19)

into (3.18), and use relations (3.12), (3.16) and the product rule: ∂1f(x1) = f(x1)∂1 + f ′(x1)

for any differentiable function f . In doing so, we obtain a coupled ODE:

dcI
dx1

= 0

dc+

dx1

= −2iEc1(x1)

dc−
dx1

= 2iβc1(x1)

dc1

dx1

= −iβc+(x1) + iEc−(x1).

(3.20)

Obviously cI(x1) ≡ cI is a constant. Defining a new variable c(x1) = −iβc+(x1) + iEc−(x1),

yields the following coupled ODE: 
dc

dx1

= −4Eβc1(x1)

dc1

dx1

= c(x1).

which we can solve to find that

c1(x1) = aei2
√
Eβ x1 + be−i2

√
Eβ x1

c(x1) = i2
√
Eβ (aei2

√
Eβ x1 − be−i2

√
Eβ x1).

Using the ODE (3.20) and the constraint −iβc+(x1) + iEc−(x1) = c(x1), we can solve for c+

and c−:

c+(x1) = −a
√

E
β
ei2
√
Eβ x1 + b

√
E
β
e−i2

√
Eβ x1 +

d

β

c−(x1) = a
√

β
E
ei2
√
Eβ x1 − b

√
β
E
e−i2

√
Eβ x1 +

d

E
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for some constants a, b, d and assuming E and β are non-zero. Substituting the expressions we

have computed for cI , c+, c−, c1 back into the general form of A in (3.19), we find four linearly

independent operators:

I (3.21)

γ+iE + γ−iβ (3.22)

−γ+

√
E

β
ei2
√
Eβ x1 + γ−

√
β

E
ei2
√
Eβ x1 + γ1ei2

√
Eβ x1 (3.23)

γ+

√
E

β
e−i2

√
Eβ x1 − γ−

√
β

E
e−i2

√
Eβ x1 + γ1e−i2

√
Eβ x1 . (3.24)

We can easily verify that these operators leave the eigenspace invariant.

For a specific choice of E, the operators (3.21) – (3.24) are only defined on the corresponding

eigenspace. If we want operators defined everywhere on (a dense subset of) the Hilbert space,

then we can interpret (3.21) – (3.24) as eigenvalue conditions which the desired operators must

satisfy. We could possibly appeal to the functional calculus from the Spectral Theorem (see

e.g. [66, Definition 10.5]) to obtain operators defined everywhere. However, we are able to

obtain some operators from (3.21) – (3.24) without using this functional calculus.

3.4.3 Finding operators

From (3.16) we immediately see that the operator ∂1 has the same action as (3.22) on the

eigenspace. (Note that we could have multiplied by −i and instead chosen the momentum

operator −i∂1, which is self-adjoint. We will not concern ourselves with self-adjointness for now.)

Since ∂1 commutes with the pseudo-Hamiltonian HLL := γ−β − γ1i∂1 and with γ+E, we can

easily verify that ∂1 does indeed leave the eigenspaces invariant. Surprisingly, (3.22) also gives

rise to another operator. If we multiply (3.22) by −iβ and use the fact, from (3.17), that E is

an eigenvalue of the Schrödinger Hamiltonian, then we obtain the operator −γ+(∂1)2 + γ−β
2.

This operator does leave the eigenspaces invariant:

HLL(−γ+(∂1)2 + γ−β
2) |ψ〉 = −iβHLL(γ+iE + γ−iβ) |ψ〉

= −iβγ+E(γ+iE + γ−iβ) |ψ〉

= γ+E(−γ+(∂1)2 + γ−β
2) |ψ〉

using the fact that γ+iE + γ−iβ leaves the eigenspace invariant. (Note that we could have also

used a similar argument for ∂1.)

Now, we shall examine (3.24). We need to find an operator which has |ψ〉 as an eigenstate

with eigenvalue involving
√
E . We would expect the eigenvalues of (∂1)2 to be the squares of

the eigenvalues of ∂1; that is, we expect the eigenvalues of ∂1 to be ±i
√
Eβ . For now, we shall

assume that |ψ〉 is an eigenstate of ∂1 with eigenvalue i
√
Eβ . With this eigenvalue, we can
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find an operator corresponding to e−2i
√
Eβ x1 :

e−2i
√
Eβ x1 |ψ〉 =

∞∑
k=0

(−2x1)k(i
√
Eβ )kψ(x1)

k!
where ψ(x1) ≡ |ψ〉

=
∞∑
k=0

(−2x1)k(∂1)kψ(x1)

k!

=
∞∑
k=0

ψ(k)(x1)

k!
(−x1 − x1)k.

This final expression is the Taylor series for ψ(−x1) about the point x1. If we assume that ψ is

analytic everywhere, then e−2i
√
Eβ x1 |ψ〉 = ψ(−x1). So, on an analytic function, e−2i

√
Eβ acts

the same as the parity operator P, defined by P(χ(x1)) = χ(−x1) for all states χ. Note that

∂1P = −P∂1 by the chain rule.

Assuming that |ψ〉 is an analytic function, then from (3.24) we compute:(
γ+

√
E

β
e−i2

√
Eβ x1 − γ−

√
β

E
e−i2

√
Eβ x1 + γ1e−i2

√
Eβ x1

)
|ψ〉

=

(
γ+

iE

i
√
Eβ

P− γ−
iβ

i
√
Eβ

P + γ1P

)
|ψ〉

= P

(
γ1 1

i
√
Eβ

∂1 + γ1

)
|ψ〉

= 2γ1P |ψ〉

using (3.16) and the fact that ∂1 has eigenvalue i
√
Eβ . Therefore, we guess that γ1P is an

operator which leaves the eigenspace invariant. And indeed, we can verify that this is true for

all eigenstates |ψ〉 (not just analytic ones):

HLL(γ1P |ψ〉) = γ−βP |ψ〉 − i∂1P |ψ〉

= γ−βP |ψ〉+ iP∂1 |ψ〉

= γ−βP |ψ〉+ iP(γ+iE + γ−iβ) |ψ〉

= −γ+EP |ψ〉

= γ+E(γ1P |ψ〉).

Note that we did not use the assumption that the eigenvalue of ∂1 is i
√
Eβ in the above

computation.

To find γ1P, we assumed that ∂1 has eigenvalue i
√
Eβ . If we instead assume that ∂1 has

eigenvalue −i
√
Eβ , then the operator we obtain from (3.24) is 0, since(

γ+

√
E

β
e−i2

√
Eβ x1 − γ−

√
β

E
e−i2

√
Eβ x1 + γ1e−i2

√
Eβ x1

)
|ψ〉

= e−i2
√
Eβ x1

(
γ1

1

i
√
Eβ

∂1 + γ1

)
|ψ〉 .
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The behaviour for (3.23) is similar: if ∂1 has eigenvalue −i
√
Eβ then we again obtain the

operator γ1P and if ∂1 has eigenvalue i
√
Eβ then we obtain the zero operator.

So far, we have identified three operators which leave the eigenspace invariant: ∂1, −γ+(∂1)2 +

γ−β
2, γ1P. Arguments identical to the ones for these operators also show that (∂1)k, −γ+(∂1)k+2+

γ−β
2(∂1)k, γ1P(∂1)k (k = 1, 2, . . .) also leave the eigenspace invariant. We can also obtain these

operators from multiplying (3.22) – (3.24) by (±i
√
Eβ )k−1 (the eigenvalue of (∂1)

k−1). Addi-

tionally, we can replace −iβ∂1 with −γ+(∂1)
2 + γ−β

2 since both act as γ+Eβ + γ−β
2 on the

eigenspace. Therefore,

(∂1)k(−γ+(∂1)2 + γ−β
2)

(−γ+(∂1)k+2 + γ−β
2(∂1)k)(−γ+(∂1)2 + γ−β

2)

γ1P(∂1)k(−γ+(∂1)2 + γ−β
2)

also leave the eigenspace invariant. (Note that (−γ+(∂1)
2 + γ−β

2)2 = −(β∂1)
2 so we do not

need to consider higher powers.)

3.4.4 Grading the operators

We have an infinite number of operators which leave the eigenspaces invariant. Since infinite-

dimensional objects are difficult to work with, we want to construct a finite-dimensional algebra

whose universal enveloping algebra contains all of these operators.

Let,

HSch = − 1

β
(∂1)2, P̂ = −i∂1, D+ = −γ+

1

β
(∂1)2 + γ−β, P1 = γ1P.

Computing the complete set of commutation and anticommutation relations we find

[P̂ , P̂ ] = 0 {P̂ , P̂} = 2βHSch

[D+, D+] = 0 {D+, D+} = 2βHSch

[P1,P1] = 0 {P1,P1} = 2I

[P̂ , D+] = 0 {P̂ , D+} = 2D+P̂

[P̂ ,P1] = −2P1P̂ {P̂ ,P1} = 0

[D+,P
1] = −2P1D+ {D+,P

1} = 0

(3.25)

and HSch commutes with the other three operators.

We can create Lie colour algebras by assigning gradings to these operators to choose which

of the above (anti)commutation relations are expressed.

Theorem 3.4.1. Let A, D+, D1, D be vector spaces. Define Z2 × Z2-graded sectors for
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A, D+, D1 and Z3
2-graded sectors for D as follows:

A00 = 0, A01 = span{P̂ , D+}, A10 = span{P1}, A11 = 0,

D+
00 = span{I,HSch}, D+

01 = span{P̂}, D+
10 = span{D+}, D+

11 = span{P1},

D1
00 = span{I}, D1

01 = span{P1}, D1
10 = 0, D1

11 = span{P̂ , D+},

D000 = span{I,HSch}, D001 = span{P̂}, D010 = span{D+}, D011 = 0,

D100 = 0, D101 = 0, D110 = 0, D111 = span{P1}.

We then define A, D+, D1, D to be the direct sum of their respective sectors. Define a bracket

on each space by JA,BK = AB − ε(α, β)BA for A, B homogeneous of degree α, β respectively.

Here, ε is the commutation factor for the algebra

for A : ε(α1α2, β1β2) = (−1)α1·β2−α2·β1

for D+ and D1 : ε(α1α2, β1β2) = (−1)α1·β1+α2·β2

for D : ε(α1α2α3, β1β2β3) = (−1)α1·β1+α2·β2+α3·β3 .

Then, A, D+, D−, and D close to form Lie colour algebras.

Proof. By examining (3.25), we verify that the bracket of the α-sector and the β-sector is

a subspace of the (α + β)-sector (for all possible sectors). The remaining properties follow

immediately from the definition of J·, ·K (cf. Example 2.1.3).

If we want to construct an algebra that contains only P̂ , D+, P
1, then we need to define a

bracket J·, ·K such that JP̂ , P̂ K = [P̂ , P̂ ] but JP̂ ,P1K = {P̂ ,P1} . This is not possible with a Lie

superalgebra, but is possible with a Z2×Z2-graded colour Lie algebra such as A. However, A is

somewhat trivial because JA,BK = 0 for all A,B ∈ A.

The most interesting relations of (3.25) are {D+, D+} = βHSch and {P1,P1} = 2I. We

would hope to capture these relations in the Lie colour algebra. Two options for a Z2×Z2-graded

algebra which realise {D+, D+} or {P1,P1} are D+ and D1 (respectively).

It is not possible to realise both {D+, D+} and {P1,P1} simultaneously with a Z2 × Z2-

grading on at most five basis elements. We can, however, do this with the Z3
2-graded algebra

D.

3.4.5 Solving the free Lévy–Leblond equation

The Z3
2-graded algebra D contains two operators, P̂ and D+, which both square to the

Schrödinger Hamiltonian HSch. Finding the eigenstates of either operator would then al-

low us to solve the Schrödinger equation. However, to solve the Lévy-Leblond equation, we

need to find simultaneous eigenstates of these operators. In a sense, this couples together

these “square roots” of HSch and leads to the coupling of the components in the solutions to

the Lévy-Leblond equation.
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Theorem 3.4.2. Solving the time-independent Lévy-Leblond equation (3.15) with E > 0 is

equivalent to finding the simultaneous eigenstates for P̂ and D+ with positive eigenvalues for

both operators. Specifically, |ψ〉 is a solution to the time independent Lévy-Leblond equation

with E > 0 if and only if

|ψ〉 = a |ϕ1〉+ bP1 |ϕ2〉

for some simultaneous eigenstates |ϕ1〉 , |ϕ2〉 of P̂ and D+ with all eigenvalues positive and

some constants a, b ∈ C.

Proof. For the forward direction, let |ψ〉 be a solution to the time-independent Lévy-Leblond

equation. Let |χ〉 = (1/
√
Eβ )P̂ |ψ〉.

First, assume |χ〉 = c |ψ〉 for some c ∈ C then |ψ〉 is an eigenstate for P̂ . From (3.16), we

know that

P̂ |ψ〉 = (γ+E + γ−β) |ψ〉 = (γ+(∂1)2 + γ−β) |ψ〉 = D+ |ψ〉 .

Therefore, |ψ〉 is also an eigenstate for D+. From (3.17) we know that (P̂ )2 |ψ〉 = Eβ |ψ〉,
and so c2 = 1. If c = 1 choose |ϕ1〉 = |ϕ2〉 = |ψ〉 and a = 1, b = 0. If c = −1 choose

|ϕ1〉 = |ϕ2〉 = P1 |ψ〉 and a = 0, b = 1.

Now, assume |χ〉 6= c |ψ〉 for any c ∈ C. Set |ϕ1〉 = |ψ〉 + |χ〉 and |ϕ2〉 = P1(|ψ〉 − |χ〉).
From (3.17) we know that (P̂ )2 |ψ〉 = Eβ |ψ〉, and so P̂ |χ〉 =

√
Eβ |ψ〉. It is then easily verified

that

P̂ |ϕ1〉 =
√
Eβ |ϕ1〉 and P̂ |ϕ2〉 =

√
Eβ |ϕ2〉 .

From (3.16), we know that

P̂ |ψ〉 = (γ+E + γ−β) |ψ〉 = (γ+(∂1)2 + γ−β) |ψ〉 = D+ |ψ〉 .

Therefore, |χ〉 = (1/
√
Eβ )D+ |ψ〉 and a similar argument shows that

D+ |ϕ1〉 =
√
Eβ |ϕ1〉 and D+ |ϕ2〉 =

√
Eβ |ϕ2〉 .

That is, |ϕ1〉 and |ϕ2〉 are simultaneous eigenstates for P̂ and D+ with all eigenvalues positive.

Moreover, |ψ〉 = |ϕ1〉+ P1 |ϕ2〉 so we set a = b = 1.

For the reverse direction, let |ϕ1〉 and |ϕ2〉 be simultaneous eigenstates of P̂ and D+ with

only positive eigenvalues. Since both operators square to βHSch we have that |ϕ1〉 and |ϕ2〉
are also eigenstates of HSch. Let E > 0 be the corresponding eigenvalue of HSch. Then the

eigenvalues for P̂ and D+ must be
√
Eβ (note that we are assuming only positive eigenvalues).

In particular,

−i∂1 |ϕ1〉 =
√
Eβ |ϕ1〉 =

(
−γ+

1

β
(∂1)2 + γ−β

)
|ϕ1〉 = (γ+E + γ−β) |ϕ1〉 .

Rearranging, we get

(γ−β − γ1i∂1) |ϕ1〉 = γ+E |ϕ1〉
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so |ϕ1〉 is a solution to the time-independent Lévy-Leblond equation. Note that the eigenvalue

of P1 |ϕ2〉 with P̂ and D+ is −
√
Eβ , so a similar argument shows that P1 |ϕ2〉 is a solution to

the Lévy-Leblond equation. Since all the operators are linear, any linear combination of |ϕ1〉
and P1 |ϕ2〉 will also be a solution to the Lévy-Leblond equation.

Theorem 3.4.2 further demonstrates that the operators of the Z2 × Z2-graded algebra D are

fundamental to the free Lévy-Leblond equation.

To conclude this section, we will use Theorem 3.4.2 to solve the Lévy–Leblond equation. So

far, all of our results have been representation independent. However, to find a solution we will

choose the following matrix representation of the gamma matrices:

γ1 =

(
1 0

0 −1

)
, γ+ =

(
0 1

0 0

)
, γ− =

(
0 0

1 0

)
.

The Hilbert space of states is then

L2(R)⊗ C2 =

{(
f

g

)
| f, g ∈ L2(R)

}
.

We are looking for simultaneous eigenstates of P̂ = −i ∂
∂x1

and D+ = −γ+(1/β) ∂2

∂x21
+ γ−β with

only positive eigenvalues. We will pre-emptively look for eigenstates with eigenvalue
√
Eβ .

We know that, up to scaling, the only eigenfunction of the derivative operator with eigenvalue

i
√
Eβ is the exponential function exp

(
i
√
Eβ

)
. Therefore, the eigenstates for P̂ are of the form(

C1e
i
√
Eβ x1

C2e
i
√
Eβ x1

)
for some constants C1, C2 ∈ C. Now, we examine which of these eigenstates are also eigenstates

of D+:

D+

(
C1e

i
√
Eβ x1

C2e
i
√
Eβ x1

)
=

(
C2Ee

i
√
Eβ x1

C1βe
i
√
Eβ x1

)
=
C1β

C2

(
(C2)2E
(C1)2β

C1e
i
√
Eβ x1

C2e
i
√
Eβ x1

)

so we must have (C1)2β = (C2)2E. Therefore, up to scaling, the only simultaneous eigenstate

with only positive eigenvalues is (√
E ei

√
Eβ x1

√
β ei

√
Eβ x1

)
.

By Theorem 3.4.2, the general solution for E > 0 is

a

(√
E ei

√
Eβ x1

√
β ei

√
Eβ x1

)
+ bγ1P

(√
E ei

√
Eβ x1

√
β ei

√
Eβ x1

)
=

(
a
√
E ei

√
Eβ x1 + b

√
E e−i

√
Eβ x1

a
√
β ei

√
Eβ x1 − b

√
β e−i

√
Eβ x2

)
for any a, b ∈ C. Note that if we substitute E = 0, then the above is still an eigenvector. For

every k ∈ R, set

ψk(x1) =
β1/4√

2π(k2 + β)

(
kei
√
β kx1

√
β ei

√
β kx1

)
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so that ψk(x1) and ψ−k(x2) are the linearly independent eigenvectors corresponding to E = k2.

Note that these eigenvectors are not square-integrable, so do not live inside the Hilbert space

L2(R)⊗ C2. If so desired, we could use a rigged Hilbert space (see e.g. [67,68] and references

therein) to make this precise. Regardless, we find that∫ ∞
−∞

dx1 ψ
†
j(x1)ψk(x1) =

jk + β√
(k2 + β)(j2 + β)

√
β

2π

∫ ∞
−∞

dx1 e
i
√
β (k−j)x1

=
jk + β√

(k2 + β)(j2 + β)
δ(k − j)

= δ(k − j)

(3.26)

where δ is the Dirac delta function. Above, we used the fact that the Fourier transform of δ is

the constant function 1. See e.g. [69, Section 2.3] for an introduction to distributions and their

Fourier transforms.

Equation (3.26) tells us that the eigenstates ψk are orthonormal. The solutions to the

time-dependent Lévy-Leblond equation (3.14) corresponding to these eigenvectors are

Ψk(t, x1) = e−ik
2tψk(x1) =

β1/4√
2π(k2 + β)

(
kei
√
β kx1−ik2t

√
β ei

√
β kx1−ik2t

)
.

We can find a more general solution to the time-dependent Lévy-Leblond equation by taking a

continuous linear combination:

Ψ(t, x1) =

∫ ∞
−∞

f(k)Ψk(t, x1) dk

for some function f ∈ L1(R) ∩ L2(R). Note that, although the eigenstate solutions Ψk(t, ·) are

not in L2(R)⊗ C2 for any t ∈ R, we can choose f so that the linear combination Ψ(t, ·) will be

in L2(R)⊗ C2 for each t ∈ R.





Chapter 4

Finding irreducible colour

representations

Lie colour algebras have recently been shown to have relevance to certain physical systems. For

example, in [4] the authors found a Z2 × Z2-graded symmetry algebra of the Lévy–Leblond

equation, and in Chapter 3 we found a Z3
2-graded Lie colour algebra. Given this, knowledge of

the representation theory of Lie colour algebras may become a useful tool. In fact, in [7] the

authors used irreducible representations to explore Z2 × Z2-supermechanics for N = 2, and

concluded their paper with the desire for a classification of the irreducible representations of

Z2 × Z2-supersymmetry algebras.

In light of discolouration, it may seem as though the representation theory of Lie colour

algebras would be identical to that of Lie superalgebras. However, discolouration only works

for Γ-graded representations. And this can be quite different from the more familiar Z2-graded

representation theory for Lie superalgebras.

Nevertheless, in this chapter we will show that the irreducible Γ-graded representations

for Lie colour algebras can be derived from the irreducible Z2-graded representations for Lie

superalgebras. This derivation is much more complicated than discolouration, and allows for

interesting differences in the representation theories.

We will also show how these results can be strengthened in the case Γ = Z2 × Z2 (and more

generally Γ = Zn2 ). In particular, we obtain bijections F1 and F2 that map between equivalence

classes of irreducible representations, as per the following diagram.

Z2-graded superalgebra irreps Γ-graded superalgebra irreps

Γ-graded colour algebra irrepsungraded colour algebra irreps

F1

recolourationdiscolouration

F2

35
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We end this chapter with an example of applying this process to a colour version of sl2.

4.1 Refining extension of a graded representation

Consider a module graded by some group. If we increase the size of the group, we may no longer

be able to find a corresponding graded module. However, if we allow ourselves to increase both

the size of the group and the size of the module, then it would be reasonable to expect that

we could find a graded module. With this idea in mind, we introduce the notion of a refining

extension.

Let g =
⊕

γ∈Γ gγ be a Γ-graded Lie colour algebra with commutation factor ε and let H be

a subgroup of Γ. Notice that g has a natural Γ/H grading, given by g =
⊕

Λ∈Γ/H g
Γ/H
Λ where

g
Γ/H
Λ =

⊕
α∈Λ gα. Recall that g also has a natural Z2-grading

g0 =
⊕
γ∈Γ0

gγ, g1 =
⊕
γ∈Γ1

gγ.

where Γ0 = {γ ∈ Γ | ε(γ, γ) = 1} and Γ1 = Γ \ Γ0. If we choose H ≤ Γ0, then Γ/H-grading

respects the Z2-grading, i.e.

g0 =
⊕

Λ∈Γ0/H

g
Γ/H
Λ , g1 =

⊕
Λ∈Γ1/H

g
Γ/H
Λ .

This is useful if we want to prevent H from interfering with discolouration.

Definition 4.1.1. Let V =
⊕

Λ∈Γ/H VΛ be a Γ/H-graded g-module given by ρ. Construct

a vector space V H =
⊕

γ∈Γ V
H
γ , where V H

γ is isomorphic (as a vector space) to Vγ+H . Let

ϕγ : V H
γ → Vγ+H be such a vector space isomorphism. The refining extension of V by H is the

g-module V H given by the representation ρH defined by

ρH(x)v = ϕ−1
α+ξ(ρ(x)ϕξ(v)), for x ∈ gα, v ∈ V H

ξ .

Intuitively, given a sector VΛ of V , we add a copy of VΛ to V H for every element of the

coset Λ. Since Γ is simply the union of all cosets, this gives V H a natural Γ grading. We then

define the action of ρH on each copy of VΛ to be the same as ρ, being careful to respect the new

Γ-grading.

Remark 4.1.2. If Γ = K ×H for some groups K, then we could equivalently define the refining

extension to be V ⊗ F[H] (where F[H] is the group algebra of H), with representation given

by ρH(x)(v ⊗ h) = ρ(x)v ⊗ (h + η) for x ∈ g(κ,η) and v ∈ V ⊗ F[H]. This is similar to the

approach used in [53] to classify the simple Z2 × Z2-graded colour Lie superalgebras. However,

with Definition 4.1.1, we do not need to make any additional assumptions on the structure of

the group Γ.

As well as a Γ-grading, V H has a natural Γ/H-grading given by

V H =
⊕

Λ∈Γ/H

(⊕
γ∈Λ

V H
γ

)
.
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In this sense, the Γ-grading of V H is a refinement of the Γ/H-grading.

Proposition 4.1.3. The g-module V is a Γ/H-graded submodule of V H (equivalently, V H is

an extension of V ).

Proof. Define a map Φ: V → V H by

Φ(w) =
∑
γ∈Λ

ϕ−1
γ (w) for w ∈ VΛ,

extending to inhomogeneous elements by linearity. Linearity of Φ for homogeneous elements

follows from linearity of ϕ−1
γ . For injectivity, if Φ(w) = 0 then ϕ−1

γ (w) = 0 for all γ ∈ Λ (because

each ϕ−1
γ (w) is in a different sector of the Γ-grade), so w = 0 by injectivity of ϕ−1

γ . Thus,

ker Φ = 0 and Φ is injective. The map Φ is homogeneous of degree 0 +H by definition. Finally,

Φ is an intertwiner: for w ∈ VΛ and x ∈ gα,

Φ(ρ(x)w) =
∑

α+γ∈α+Λ

ϕ−1
α+γ(ρ(x)w)

=
∑

α+γ∈α+Λ

ϕ−1
α+γ(ρ(x)ϕγϕ

−1
γ (w))

=
∑
γ∈Λ

ρH(x)ϕ−1
γ (w)

= ρH(x)Φ(w).

If V can be given a Γ-grading, then we can strengthen the above result:

Proposition 4.1.4. If V can be given a Γ-grading that respects the Γ/H-grading, then V is a

Γ-graded submodule of V H .

Proof. Let V =
⊕

γ∈ΓWγ be the Γ-grading, with VΛ =
⊕

γ∈Λ Wγ for all Λ ∈ Γ/H (i.e. the

Γ-grading respects the Γ/H grading). Define a map Φ: V → V H by Φ(w) = ϕ−1
ξ (w) for w ∈ Wξ

and extending to inhomogeneous elements by linearity. Linearity and injectivity of Φ follow

immediately from linearity and injectivity of ϕ−1
ξ . The map Φ is homogeneous of degree 0 by

definition. And Φ is an intertwiner: for w ∈ Wξ and x ∈ gα,

Φ(ρ(x)w) = ϕ−1
α+ξ(ρ(x)w) = ϕ−1

α+ξ(ρ(x)ϕξϕ
−1
ξ (w)) = ρH(x)Φ(w).

The following result is a restatement of the First Isomorphism Theorem in a form that is

useful for refining extensions.

Proposition 4.1.5. Let V =
⊕

Λ∈Γ/H VΛ be a Γ/H-graded g-module given by ρ and W =⊕
γ∈ΓWγ be a Γ-graded g-module given by π. Suppose there are linear maps fγ : Vγ+H → Wγ

that satisfy fα+γ(ρ(x)v) = π(x)fγ(v) for all x ∈ gα, v ∈ Vγ+H . Let V H be the refining extension

of V by H and define fHγ = fγϕγ where ϕγ : V H
γ → Vγ+H are the isomorphisms in the construction

of V H . Then,



38 CHAPTER 4. FINDING IRREDUCIBLE COLOUR REPRESENTATIONS

(i) K =
⊕

γ∈Γ ker fHγ is a submodule of V H ;

(ii) I =
⊕

γ∈Γ im fHγ is a submodule of W ; and

(iii) V H/K ∼= I.

Proof. Define f : V H → W by

f(v) = fHξ (v)

for v ∈ V H
ξ and extending to inhomogeneous elements by linearity. It is easy to see that f is

an intertwiner, ker f = K and im f = I. The result follows immediately by applying the First

Isomorphism Theorem to f .

Remark 4.1.6. Refining extensions appear naturally in applications of Lie colour algebras. For

instance, the example Z2 × Z2-graded supersymmetric quantum mechanical system presented

in [29, Section III] can be obtained by applying a cocycle twist to the refining extension of

Witten’s model [30] (with an additional central charge) by Z2.

4.2 Finding irreducible graded representations

Let g be a Lie colour algebra. We will show that all the irreducible Γ-graded representations

can be derived from the irreducible Γ/H-graded representations. If we choose H = Γ0 so that

Γ/H ≤ Z2 (and discolour/recolour the algebra as needed) then this will allow us to apply results

from the well-studied Z2-graded representation theory of Lie algebras and superalgebras to the

representation theory of colour algebras.

Suppose we are given a finite-dimensional irreducible Γ/H-graded g-module V . To construct

an irreducible Γ-graded g-module, we can simply take the refining extension V H and quotient

out by a maximal Γ-graded submodule. Since V H may have many maximal submodules, this

procedure may yield many nonisomorphic Γ-graded modules for each Γ/H-graded module.

However, in the following theorem, we show that every irreducible Γ-graded g-module can be

constructed in this way.

Theorem 4.2.1. Let g =
⊕

γ∈Γ gγ be a Lie colour algebra. Let W =
⊕

γ∈Γ Wγ be a finite-

dimensional irreducible Γ-graded g-module. Then, for H ≤ Γ, there exists an irreducible

Γ/H-graded g-module V such that W is a graded quotient of the refining extension of V by H.

Proof of Theorem 4.2.1. Note that W has a natural Γ/H-grading given by

⊕
Λ∈Γ/H

(⊕
γ∈Λ

Wγ

)
.

Let V be an irreducible Γ/H-graded submodule of W . Such a V exists by strong induction on

the dimension of W . If W is one-dimensional then we can choose V = W . If W has dimension

larger than one, then either W is irreducible as a Γ/H-graded g-module (in which case, we
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choose V = W ), or W has a Γ/H-graded submodule of strictly smaller dimension to which the

inductive hypothesis applies.

Let ρ : g→ gl(W, ε) be the representation corresponding to W (ρ also provides a submodule

structure for V ).

Let fξ : Vξ+H → Wξ be the projection of Vξ+H onto Wξ, so that v =
∑

γ∈Λ fγ(v) for all

v ∈ VΛ, Λ ∈ Γ/H. Note that fξ is well-defined because of the direct sum decomposition

Vξ+H ⊆
⊕

γ∈ξ+HWγ. In particular, every v ∈ Vξ+H can be written as a linear combination∑
γ∈ξ+H wγ for unique wγ ∈ Wγ , so the unique choice for fξ(v) is wξ. Additionally, it is easy to

see that fξ is linear.

Let v ∈ VΛ and x ∈ gα. Since v =
∑

γ∈Λ fγ(v), we have ρ(x)v =
∑

γ∈Λ ρ(x)fγ(v) (note that

ρ(x)fγ(v) ∈ Wα+γ for all γ ∈ Γ). Since such a linear combination of homogeneous elements is

unique, for all γ ∈ Λ we have that fα+γ(ρ(x)v) = ρ(x)fγ(v) by the definition of fα+γ.

Therefore, by Proposition 4.1.5, I ∼= V H/K for I =
⊕

γ∈Γ im fHγ and K =
⊕

γ∈Γ ker fHγ .

But I is a Γ-graded is a submodule of W , so I = 0 or I = W by irreducibility of W . However,

since V 6= 0, there is some nonzero sector VΛ of V (with Λ ∈ Γ/H). Any non-zero element

v ∈ VΛ can be written as v =
∑

γ∈Λ fγ(v), so fξ(v) 6= 0 for at least one ξ ∈ Γ (otherwise v = 0).

That is, im fξ 6= 0, so I 6= 0. We conclude that I = W ; hence W ∼= V H/K as claimed.

Theorem 4.2.1 provides us with a general method of obtaining the irreducible Γ-graded

modules from the Γ/H-graded ones. However, this theorem does not provide much information

about the actual structure of the Γ-graded modules.

4.3 The case H ∼= Z2

If we limit our discussion to the case where H ∼= Z2, then the small size of the group drastically

limits the possibilities, and we can deduce much stronger results about the structure of the

Γ-graded modules. In particular, we will construct a bijection between (equivalence classes of)

the Γ/H- and Γ-graded modules and show that every irreducible Γ-graded module is either an

irreducible Γ/H-graded module or its refining extension.

To actually construct such a bijection, we need to know the composition series for V H and

the amount of freedom we have when choosing a Γ-grading for V (when such a grading is

possible). With these goals in mind, we introduce the notions of Γ/H-representative negation

and change of H-parity.

4.3.1 Γ/H-representative negation

The composition factors for V H (as a Γ/H-graded module) restrict which quotients are possible,

and hence which Γ-graded representations are possible. Given that V H was constructed from

two (= |H|) copies of V , we might expect that the composition factors are merely V, V . This

is not the case; the composition factors are V −, V for some module V − which we call the
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Γ/H-representative negation. The structure of V − is almost identical to that of V , with the

representation differing only by an occasional sign change.

More precisely, let G be a set containing exactly one representative from each coset in Γ/H.

Note that G does not necessarily form a group. Let V =
⊕

Λ∈Γ/H VΛ be a Γ/H-graded g-module

given by the representation ρ. Define a new module V − with representation ρ− via the following:

Set V − =
⊕

Λ∈Γ/H V
−

Λ where V −Λ = VΛ (as vector spaces). Take an arbitrary x ∈ gα, α ∈ Γ and

v ∈ VΛ, Λ ∈ Γ/H. Let ξ be the unique representative of Λ that is also in G. Define ρ− by

ρ−(x)v =

ρ(x)v if α + ξ ∈ G

−ρ(x)v if α + ξ /∈ G.

Proposition 4.3.1. V − is a g-module.

Proof. Let H = {0, η}. Both linearity properties of ρ− follow immediately from that of ρ.

Let x ∈ gα, y ∈ gβ and v ∈ VΛ be arbitrary. Let ξ be the unique representative of Λ that is also

in G. We claim that ρ−(x)ρ−(y)v = ρ(x)ρ(y)v if α+ β + ξ ∈ G and ρ−(x)ρ−(y)v = −ρ(x)ρ(y)v

if α + β + ξ /∈ G. If β + ξ ∈ G then ρ−(y)v = ρ(y) and the claim is obvious. If β + ξ /∈ G then

ρ−(y)v = −ρ(y). Additionally, the representative of β + ξ +H in G must be β + ξ + η. Thus,

by definition,

ρ−(x)ρ−(y)v = −ρ−(x)(ρ(y))v =

−ρ−(x)ρ−(y) if α + β + ξ + η ∈ G

ρ−(x)ρ−(y) if α + β + ξ + η /∈ G
.

Since α + β + ξ ∈ G if and only if α + β + ξ + η /∈ G, this proves the claim.

Now, ρ− is a representation:

ρ−(Jx, yK)v =

ρ(Jx, yK)v if α + β + ξ ∈ G

−ρ(Jx, yK)v if α + β + ξ /∈ G

=

(ρ(x)ρ(y)− ε(α, β)ρ(y)ρ(x))v if α + β + ξ ∈ G

−(ρ(x)ρ(y)− ε(α, β)ρ(y)ρ(x))v if α + β + ξ /∈ G

= (ρ−(x)ρ−(y)− ρ−(y)ρ−(x))v

by the above claim.

We call V − the Γ/H-representative negation of V (with representatives G). The module V −

is not necessarily isomorphic to V . Note that the Γ/H-representative negation of V − is V .

Proposition 4.3.2. If V is irreducible then V − is irreducible.

Proof. If U is a submodule of V − then ρ−(g)U ⊆ U . Since ρ only differs from ρ− by a sign (at

most), we have that ρ(g)U ⊆ U . Hence, U is also submodule of V . If V is irreducible then, as a

vector space, U = 0 or U = V = V −.
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Proposition 4.3.3. There is an equality of g-modules: (V H)− = (V −)H .

Proof. Clearly (V H)− and (V −)H are equal as vector spaces. We just need to check the module

structure. Let ρH− be the representation for (V H)− and ρ−H be the representation for (V −)H .

Let v ∈ V H
γ and x ∈ gα. Choose ξ to be the unique representative of γ +H that is also in G.

Then,

ρH−(x)v =

ρH(x)v if α + ξ ∈ G

−ρH(x)v if α + ξ /∈ G

=

ϕ
−1
α+γρ(x)ϕγv if α + ξ ∈ G

ϕ−1
α+γ(−ρ(x))ϕγv if α + ξ /∈ G

= ϕ−1
α+γρ

−(x)ϕγv

= ρ−H(x)v.

It is clear from the definition and the above propositions that the Γ/H-representative

negation has a very similar module structure to V . This is useful when examining the structure

of V H :

Proposition 4.3.4. V − ∼= V H/V .

Proof. Let H = {0, η}. Recall that V is a Γ/H-graded submodule of V H by Proposition 4.1.3,

with embedding Φ: V → V Hgiven by

Φ(w) =
∑
γ∈Λ

ϕ−1
γ (w)

for w ∈ VΛ (notation as in Section 4.1). Define a map Ψ: V − → V H/Φ(V ) given by

Ψ(w) = ϕ−1
ξ (w) + Φ(VΛ)

for w ∈ V −Λ and ξ the unique representative of Λ in the set G. Define Ψ for inhomogeneous

elements by linearity. We claim that Ψ is an isomorphism. Indeed, linearity for homogeneous

elements follows from the fact that ϕγ : V H
γ → Vγ+H is a vector space isomorphism for all γ ∈ Γ.

For injectivity, if Ψ(w) = 0 = 0 + Φ(VΛ) then Ψ(w) ∈ Φ(VΛ); that is,

ϕ−1
ξ (w) = ϕ−1

ξ (w) + ϕ−1
ξ+η(w) =⇒ 0 = ϕ−1

ξ+η(w)

(noting that Λ = {ξ, ξ + η}) and hence w = 0 by injectivity of ϕ−1
ξ+η. Thus, ker Ψ = 0 and Ψ is

injective.

For surjectivity, let v+ Φ(VΛ) be an arbitrary element of (V H/Φ(V ))Λ = (V H
ξ ⊕V H

ξ+η)/Φ(VΛ).

Write v = vξ + vξ+η where vξ ∈ V H
ξ , vξ+η ∈ V H

ξ+η. Then,

Ψ(ϕξ(vξ)− ϕξ+η(vξ+η)) = (vξ − ϕξϕξ+η(vξ+η)) + Φ(VΛ)

= (vξ − ϕ−1
ξ ϕξ+η(vξ+η)) + Φ(ϕξ+η(vξ+η)) + Φ(VΛ)

= (vξ − ϕ−1
ξ ϕξ+η(vξ+η)) + (ϕ−1

ξ ϕξ+η(vξ+η) + vξ+η) + Φ(VΛ)

= v + Φ(VΛ)
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so Ψ is surjective.

The map Ψ is homogeneous of degree 0 + Φ(V ) by definition. Finally, Ψ is an intertwiner:

for w ∈ V −Λ and x ∈ gα, if α + ξ ∈ G then

Ψ(ρ−(x)w) = ϕ−1
α+ξ(ρ(x)w) + Φ(V )

= ϕ−1
α+ξρ(x)ϕξϕ

−1
ξ (w) + Φ(V )

= ρH(x)Ψ(w)

and if α + ξ /∈ G then α + ξ + η ∈ G and so

Ψ(ρ−(x)w) = ϕ−1
α+ξ+η(−ρ(x)w) + Φ(V )

= −ϕ−1
α+ξ+η(ρ(x)w) + Φ(ρ(x)w) + Φ(V )

= −ϕ−1
α+ξ+ηρ(x)w + (ϕ−1

α+ξρ(x)w + ϕ−1
α+ξ+ηρ(x)w) + Φ(V )

= ϕ−1
α+ξρ(x)w + Φ(V )

= ϕ−1
α+ξρ(x)ϕξϕ

−1
ξ (w) + Φ(V )

= ρH(x)Ψ(w).

In either case, we have that Ψ is an intertwiner.

Remark 4.3.5. The above proof relies on the fact that H ∼= Z2.

The following corollary shows that the Γ/H-representative negation of V does not depend

on the choice of representatives G.

Corollary 4.3.6. Let G, G̃ be two sets which each contain exactly one representative from each

coset of Γ/H. Let V −, Ṽ − be the corresponding Γ/H-representative negations of V . Then V −

and Ṽ − are isomorphic as Γ/H-graded modules.

Proof. V − ∼= V H/V ∼= Ṽ −.

If we assume that V is irreducible, then we can determine the composition series for V H in

terms of V and V −.

Corollary 4.3.7. Assume V is irreducible. As a Γ/H-module, the composition series for the

refining extension V H is

V H ⊇ V ⊇ 0

with composition factors V −, V .

Proof. We have V/0 ∼= V and V H/V ∼= V −. Using Proposition 4.3.2, both V − and V are

irreducible, so the given chain of submodules is indeed a composition series.
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4.3.2 Change of H-parity

It is possible for two modules to be non-isomorphic as Γ-graded modules but isomorphic as

Γ/H-graded modules. It is necessary to consider this fact when trying to construct all the

Γ-graded modules from the Γ/H-graded ones. A common way (for H ∼= Z2, the only way) that

non-isomorphic Γ-gradings appear is by permuting the newly added sectors by elements of H.

Such a permutation is called a change of H-parity.

We say that two Γ-graded modules W =
⊕

γ∈ΓWγ and W ′ =
⊕

γ∈ΓW
′
γ are equivalent

up to change of H-parity if there exists a Γ/H-graded isomorphism Φ: W → W ′ such that

Φ(Wξ) = W ′
ξ+h for some h ∈ H and each ξ ∈ Γ. It is easily verified that this is an equivalence

relation. Also, note that Γ-graded isomorphism is a special case of change of H-parity; i.e. if W

and W ′ are isomorphic as Γ-graded modules then W and W ′ are equivalent up to change of

H-parity of sectors.

Lemma 4.3.8. If V is a finite-dimensional irreducible Γ/H-graded g-module, then two Γ-

gradings for V are equivalent up to change of H-parity.

More precisely, this lemma tells us that if V =
⊕

γ∈Γ Vγ and V =
⊕

γ∈Γ V
′
γ are two Γ-gradings

for V which both respect the Γ/H grading (i.e. for each Λ ∈ Γ/H the original Λ-sector is⊕
γ∈Λ Vγ =

⊕
γ∈Λ V

′
γ) then there exists an isomorphism Φ: V → V such that Φ(Vξ) = V ′ξ+h for

some h ∈ H and for each ξ ∈ Γ.

Proof. Define the map Ψ: V → V to be the projection of Vξ onto V ′ξ for each ξ ∈ Γ, and

then extend to inhomogeneous elements. That is, if v ∈ Vξ and v =
∑

γ∈ξ+H v
′
γ for v′γ ∈ V ′γ ,

then Ψ(v) = v′ξ. Since the above linear combination is unique, Ψ is well-defined. Clearly, Ψ

is linear. Since Ψ(
⊕

γ∈Λ Vγ) =
⊕

γ∈Λ V
′
γ , we have that Ψ is homogeneous of degree 0 (using

the assumption that the Γ-gradings respect the Γ/H-grading). For v ∈ Vξ and x ∈ gα, if

v =
∑

γ∈ξ+H v
′
γ then

ρ(x)v =
∑

γ∈ξ+H

ρ(x)v′γ,

and since ρ(x)v ∈ Vα+ξ and ρ(x)v′ξ ∈ V ′α+ξ, we have that Ψ(ρ(x)v) = ρ(x)v′ξ = ρ(x)Ψ(v). Thus,

Ψ is an intertwiner.

Now, Ψ(V ) is a submodule of V , so Ψ(V ) = 0 or Ψ(V ) = V since V is irreducible. If

Ψ(V ) = V then Ψ is surjective and hence injective (since V is finite dimensional). That is, Ψ is

an isomorphism. Additionally, Ψ(Vξ) = V ′ξ , so choosing Φ = Ψ completes the proof in this case.

Alternatively, if Ψ(V ) = 0 then

Vξ ⊆
⊕
γ∈ξ+H
γ 6=ξ

V ′γ = V ′ξ+η

where H = {0, η}. In this case, choosing Φ to be the identity map completes the proof.

Remark 4.3.9. The above proof relies on the fact that H ∼= Z2.
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Note that is always possible to change the H-parity of a module. However, changing the

H-parity might yield a module isomorphic to the original. Indeed, changing the H-parity of V H

yields V H , i.e. there is only one element in the equivalence class of V H (up to isomorphism).

4.3.3 A bijection

Let g =
⊕

γ∈Γ gγ be a Lie colour algebra. Additionally, let H ≤ Γ with H ∼= Z2. Let

Irr−Γ/H(g) be the collection of equivalence classes of finite-dimensional irreducible Γ/H-graded

g-modules, where two Γ/H-graded modules are equivalent if, after potentially performing

Γ/H-representative negation, they are isomorphic. Let IrrHp−
Γ (g) be the collection of equivalence

classes of finite-dimensional irreducible Γ-graded g-modules, where two Γ-graded modules are

equivalent if, after potentially performing Γ/H-representative negation, they are equivalent up

to change of H-parity.

Theorem 4.3.10. Define a function F : Irr−Γ/H → IrrHp−
Γ by

F(V ) = V H/K

where V and V H/K are representatives of the equivalence classes, and K is a maximal submodule

of V H . Then F is well-defined (does not depend on the choice of representative V nor the choice

of K) and bijective.

Proof. From Corollary 4.3.7, we have the following composition series of Γ/H-graded modules:

V H ⊇ V ⊇ 0

with composition factors V −, V (where V − is the Γ/H-representative negation of V ). Applying

the Schreier Refinement Theorem to this composition series and V H ⊇ K ⊇ 0, we have that (as

a Γ/H-module) K is isomorphic to 0, V or V −.

If K = 0 then this is the unique choice for K by the definition of a maximal submodule. In

this case, F(V ) = V H .

Now, suppose K ∼= V as Γ/H-graded modules. Then, 0 cannot be a maximal submodule,

so all maximal submodules must be isomorphic to V or V −. For now, assume that K ∼= V .

Note that K gives V a Γ-grading. In particular, we choose a Γ-grading V =
⊕

γ∈Γ Vγ such that

there exists an isomorphism of Γ/H-graded modules Φ: K → V with Φ(Kγ) = Vγ+η for nonzero

η ∈ H and all γ ∈ Γ (where K =
⊕

γ∈ΓKγ). Given a Γ-grading, there is a natural embedding

of V into V H (cf. Proposition 4.1.4). Since V H
γ
∼= Vγ+H

∼= Vγ ⊕ Vγ+η
∼= Vγ ⊕Kγ (vector space

isomorphisms), we find that V H/K is isomorphic as a Γ-graded module to V − =
⊕

γ∈Γ V
−
γ .

If we instead assume that K ∼= V −, a similar argument shows that V H/K is isomorphic as a

Γ-graded module to V . Since V is equivalent to V , and all Γ-gradings of V or V − are equivalent

up to change of H-parity by Lemma 4.3.8, we find that F(V ) =
⊕

γ∈Γ V
−
γ does not depend on

the choice of K.
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Obviously F does not depend on the choice of representative V . Thus, F is well-defined.

That F is surjective follows immediately from Theorem 4.2.1.

For injectivity, assume F(V ) = F(V ′). From the above discussion, we can see that F(V ) =

V H , F(V ) = V or F(V ) = V − and similarly for F(V ′). We analyse the possibilities case-by-case.

We cannot have F(V ) = V H and F(V ′) = V ′ because, as Γ/H-graded modules, the former is

reducible but the latter is irreducible. Similarly, we cannot have F(V ) = V H and F(V ′) = V ′−;

nor F(V ) = V and F(V ′) = (V ′)H ; nor F(V ) = V − and F(V ′) = (V ′)H . If F(V ) = V and

F(V ′) = V ′ then, by the definition of equivalence up to change of H-parity, V and V ′ must

be isomorphic as Γ/H-graded modules (as required). Similarly, V and V ′ are equivalent if

F(V ) = V − and F(V ) = V ′−; or F(V ) = V and F(V ′) = V ′−; or F(V ) = V − and F(V ′) = V ′.

If F(V ) = V H and F(V ′) = (V ′)H then V H is isomorphic as a Γ/H-graded module to (V ′)H

or ((V ′)H)− = (V ′−)H (using Proposition 4.3.3). The composition factors of V H are V −, V .

And (V ′)H and (V ′−)H both have the same composition factors: V ′−, V ′. Therefore, by the

Jordan–Hölder Theorem, we must have that V is isomorphic as a Γ/H-graded module to V ′−

or V ′. That is V is equivalent to V ′.

Corollary 4.3.11. Let H ∼= Z2. Then, every finite-dimensional irreducible Γ-graded module is

either irreducible as a Γ/H-graded irreducible module or is the refining extension of an irreducible

Γ/H-graded module.

Proof. We examine the possible cases encountered in the proof of the above theorem.

Taking Γ = Z2 × Z2, H = {00, 11}, the above theorem (in combination with discoloura-

tion/recolouration) gives a way to construct the irreducible modules of the Z2 × Z2-graded

colour Lie superalgebras from the Z2-graded Lie superalgebras. In particular, Theorem 4.3.10

gives us a bijection between Z2-graded superalgebras representations and Γ-graded superalgebra

representations which we can then recolour. Using iterated applications of the theorem gives a

procedure to produce irreducible Zn2 -graded modules for any positive integer n. For Γ = Zn2 ,

Theorem 4.3.10 also gives us a bijection between the graded and ungraded modules for the

colour algebra.

4.4 Example: colour sl2

As an example, we will determine the finite-dimensional irreducible representations of slc2

over C. The algebra slc2 is a Z2 × Z2-graded colour Lie algebra with commutation factor

ε(α1α2, β1β2) = (−1)α1β2−α2β1 and sectors spanned by the following elements:

00-sector: 0 10-sector: a1 01-sector: a2 11-sector: a3

and equipped with a bracket J·, ·K which satisfies

Ja1, a2K = a3 Ja2, a3K = a1 Ja3, a1K = a2.
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Using the multiplier σ(α1α2, β1β2) = (−1)α2β1 , slc2 discolours to a Lie algebra with Lie bracket

J·, ·Kσ = [·, ·] given by

[a1, a2] = a3 [a2, a3] = −a1 [a3, a1] = −a2.

These commutation relations are satisfied by the following realisation

a1 =
i

2
(e− f) a2 = −1

2
(e+ f) a3 = − i

2
h. (4.1)

in terms of a standard basis {h, e, f} for sl2, ([h, e] = 2e, [h, f ] = −2f, [e, f ] = h). Consequently,

the discolouration (slc2)σ is isomorphic to sl2 (hence the notation).

The Lie colour algebra slc2 has appeared in the literature before. In [59], the authors found

all the ungraded irreducible representations for slc2 by embedding U(slc2) in M2(U(sl2)) (the

space of 2 × 2 matrices with entries in U(sl2)). The approach that we will take via refining

extensions is very similar, though we will not work at the level of universal enveloping algebras.

Additionally, our approach is undertaken in the context of the more general preceding sections.

Our strategy is as follows:

1. find all of the ungraded irreducible representations for sl2;

2. use the techniques from the preceding sections to find the Z2-graded irreducible represen-

tations for sl2;

3. similarly, find the Z2 × Z2-graded irreducible representations for sl2;

4. recolour to obtain the Z2 × Z2-graded irreducible representations for slc2.

5. Find the ungraded irreducible representations for slc2 as subrepresentations

4.4.1 Irreducible representations for sl2

Recall that sl2 has a unique irreducible representation Vλ of dimension λ+ 1 for every highest

weight λ ∈ Z≥0 (see e.g. [70, Lemma 3.2]). We will choose a basis {v0, v1, . . . , vλ} for Vλ such

that

hvj = (λ− 2j)vj evj = (λ− j + 1)vj−1 fvj = (j + 1)vj+1

with the convention v−1 = vλ+1 = 0. In particular, note that v0 is the highest weight vector. (In

the above line and what follows, we have omitted the explicit representation map ρ : sl2 → gl(Vλ).)

Using (4.1), we find that

a1vj =
i

2
((λ− j + 1)vj−1 − (j + 1)vj+1)

a2vj = −1

2
((λ− j + 1)vj−1 + (j + 1)vj+1)

a3vj = − i
2

(λ− 2j)vj.



4.4. EXAMPLE: COLOUR sl2 47

4.4.2 Z2-graded irreducible representations

We wish to find the Z2-graded representations. So, we choose Γ1 = H1 = Z2×Z2/{00, 11} ∼= Z2.

Under this group and the original slc2 grading, the sectors for sl2 are spanned by the following

elements:

0-sector: a3 1-sector: a1, a2.

The ungraded module Vλ can be given a Γ1-grading: V E
λ,0 ⊕ V E

λ,1 where

V E
λ,0 = span{vj | j even} V E

λ,1 = span{vj | j odd}.

We can easily check that a1V
E
λ,γ ⊆ V E

λ,γ+1, a2V
E
λ,γ ⊆ V E

λ,γ+1 and a3V
E
λ,γ ⊆ V E

λ,γ for γ ∈ Z2. Call

this Γ1-graded module V E
λ .

Since Vλ is an irreducible ungraded module, V E
λ is an irreducible Γ1-graded module. By

changing the H1-parity of V E
λ , we get another Γ1-graded irreducible module V O

λ = V O
λ,0 ⊕ V O

λ,1

where

V O
λ,0 = span{vj | j odd} V O

λ,1 = span{vj | j even}.

By Lemma 4.3.8, we do not need to search for any other gradings. And by Corollary 4.3.11,

we do not need to check the refining extension at all. Thus, the finite-dimensional irreducible

Γ1-graded sl2-modules are V E
λ and V O

λ for λ ∈ Z≥0.

4.4.3 Z2 × Z2-graded irreducible representations

Now we wish to find the Z2 × Z2-graded representations. So, we choose Γ2 = Z2 × Z2 and

H2 = {00, 11}. To try and find Γ2-gradings, it is first useful to know what properties they must

satisfy.

Lemma 4.4.1. Let Vλ =
⊕

γ∈Γ2
Wγ be a Γ2-grading for Vλ. Then v0 =

∑
γ∈Γ2

v0,γ where

v0,γ ∈ Wγ is some linear combination of v0 and vλ (possibly equal to zero).

Proof. Since h = 2ia3 is homogeneous of degree 11, we find that h2Wγ ⊆ Wγ. If we project v0

onto each sector and write v0 =
∑

γ∈Γ2
v0,γ, for v0,γ ∈ Wγ then we find that∑

γ∈Γ2

h2v0,γ = h2(v0) =
∑
γ∈Γ2

λ2v0,γ.

In particular, h2v0,γ = λ2v0,γ for every γ ∈ Γ2. Using our knowledge of the eigenvectors of h, we

find that v0,γ must be a linear combination of v0 and vλ.

Remark 4.4.2. A similar result holds for vλ =
∑

γ∈Γ2
vλ,γ.

Lemma 4.4.1 tells us that at least one sector contains a nonzero linear combination of v0

and vλ. Our strategy is to then apply a1 and a2 to this linear combination to help deduce the

structure of a Γ2-grading or prove that one cannot exist.
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The λ even case

If λ is even, then both v0 and vλ are in V E
λ,0. Therefore, using Lemma 4.4.1, we find that the

00-sector or 11-sector must contain a nonzero linear combination of v0 and vλ. We choose (after

some trial and error) v0 + vλ to be in the 00-sector and v0− vλ to be in the 11-sector. With this

choice, we can find a Γ2-grading for V E
λ :

V E+
λ,00 = span{vj + vλ−j | j even}, V E+

λ,10 = span{vj − vλ−j | j odd},

V E+
λ,01 = span{vj + vλ−j | j odd}, V E+

λ,11 = span{vj − vλ−j | j even}.
(4.2)

Denote this Γ2-graded module by V E+
λ . We calculate

a1(vj ± vλ−j) =
i

2
((λ− j + 1)(vj−1 ∓ vλ−(j−1))− (j + 1)(vj+1 ∓ vλ−(j+1))

a2(vj ± vλ−j) = −1

2
((λ− j + 1)(vj−1 ± vλ−(j−1)) + (j + 1)(vj+1 ± vλ−(j+1))

a3(vj ± vλ−j) = − i
2

((λ− 2j)(vj ∓ vλ−j))

from which we can easily verify that a1V
E+
λ,γ ⊆ V E+

λ,γ+10, a2V
E+
λ,γ ⊆ V E+

λ,γ+01 and a3V
E+
λ,γ ⊆ V E+

λ,γ+11

for each γ ∈ Γ2. Since V E
λ is irreducible, so is V E+

λ . By changing the H2-parity of V E+
λ , we

get another Γ2-graded irreducible module V E−
λ , which can be obtained from V E+

λ by swapping

the 00- with the 11-sector and the 10- with the 01-sector. Note that V E+
λ and V E−

λ are not

isomorphic, because vλ/2 = (1/2)(vλ/2 + vλ−λ/2) (the unique vector with weight λ/2) will be in

different sectors.

Performing similar computations with V O
λ , we find two more irreducible Γ2-graded modules

V O+
λ and V O−

λ (these can be obtained from V E+
λ by swapping the 00- with the 01-sector and

the 10- with the 11-sector to get V O+
λ ; and by swapping the 00- with the 10-sector and the 01-

with the 11-sector to get V O−
λ ). By Lemma 4.3.8 and Corollary 4.3.11 we do not need to search

for any more irreducible Γ2-graded modules in the case where λ is even.

The λ odd case

Lemma 4.4.3. If λ is odd, then V E
λ cannot be given a Γ2-grading.

Proof. For contradiction, assume that we can give V E
λ a Γ2-grading, V E

λ =
⊕

γ∈Γ2
V E
λ,γ . From the

structure of V E
λ , we know that v0 ∈ V E

λ,0 = V E
λ,00⊕V E

λ,11. Therefore, we can write v0 = v0,00 +v0,11

for v0,00 ∈ V E
λ,00, v0,11 ∈ V E

λ,11. By Lemma 4.4.1, both v0,00 and v0,11 are linear combinations of

v0 and vλ. But since vλ ∈ V E
λ,1 = V E

λ,10 ⊕ V E
λ,01, we must have that both v0,00 and v0,11 are scalar

multiples of v0. And since they sum to v0 6= 0, at least one of them must be nonzero. That is,

v0 ∈ V E
λ,00 or v0 ∈ V E

λ,11. An analogous argument shows that vλ ∈ Vλ,10 or vλ ∈ Vλ,01.
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If v0 ∈ V E
λ,00 and vλ ∈ V E

λ,01 then applying by a1 we find

v1 = 2ia1v0 ∈ V E
λ,00 ⊕ V E

λ,10

v2 = ia1v1 +
λ

2
v0 ∈ V E

λ,00 ⊕ V E
λ,10

...

vj+1 =
2i

j + 1
a1vj +

λ− j + 1

j + 1
vj−1 ∈ V E

λ,00 ⊕ V E
λ,10.

Proceeding inductively, we find that V E
λ ⊆ V E

λ,00 ⊕ V E
λ,10. But, by applying a1 to vλ in a similar

way, we find that V E
λ ⊆ V E

λ,10 ⊕ V E
λ,11, a contradiction! We similarly arrive at a contradiction

if we assume v0 ∈ V E
λ,11 and vλ ∈ V E

λ,10; v0 ∈ V E
λ,00 and vλ ∈ V E

λ,10; or v0 ∈ Vλ,11 and vλ ∈ Vλ,01.

(Note that in some of these cases we need to use a2 instead of a1.)

We have just shown that V E
λ cannot be given a Γ2-grading if λ is odd. By Corollary 4.3.11,

the refining extension V EH2
λ must therefore be an irreducible Γ2-graded representation. If we

take a basis {vα,j | α ∈ H2
∼= Z2, j = 0, . . . , λ} for V EH2

λ , where

V EH2
λ,00 = span{v0,j | j even}, V EH2

λ,10 = span{v1,j | j odd},

V EH2
λ,01 = span{v0,j | j odd}, V EH2

λ,11 = span{v1,j | j even},
(4.3)

then we can compute the action as

a1vα,j =
i

2
((λ− j + 1)vα+1,j−1 − (j + 1)vα+1,j−1)

a2vα,j = −1

2
((λ− j + 1)vα,j−1 + (j + 1)vα,j−1)

a3vα,j = − i
2

(λ− 2j)vα+1,j.

By similar reasoning, we find that V OH2
λ is an irreducible Γ2-graded representation. We can

obtain V OH2
λ from V EH2

λ by swapping the 00- with the 01-sector and the 10- with the 11-sector.

Note that if we change the H2-parity of either of these modules, we get the same module. By

Corollary 4.3.11, the only irreducible Γ2-graded modules for the case where λ is odd are V EH2
λ

and V OH2
λ .

4.4.4 Recolouring

To recolour sl2 to slc2 we use the multiplier σ(α1α2, β1β2) = (−1)α2β1 . To obtain the Z2 × Z2-

graded irreducible modules for slc2, we use this same multiplier for the Z2×Z2-graded irreducible

modules for sl2.

Theorem 4.4.4. The only finite-dimensional Z2 × Z2-graded irreducible modules for slc2 are:
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(i) For each even number λ, the four modules which are equivalent to (V E+
λ )σ up to change

of Z2 × Z2-parity. The sectors of (V E+
λ )σ are given as in (4.2) and the action is given by

a1(vj ± vλ−j) =
i

2
((λ− j + 1)(vj−1 ∓ vλ−(j−1))− (j + 1)(vj+1 ∓ vλ−(j+1))

a2(vj ± vλ−j) = ∓1

2
((λ− j + 1)(vj−1 ± vλ−(j−1)) + (j + 1)(vj+1 ± vλ−(j+1))

a3(vj ± vλ−j) = ∓ i
2

((λ− 2j)(vj ∓ vλ−j)).

The dimension of these modules is λ+ 1.

(ii) For each odd number λ, the two modules which are equivalent to (V EH2
λ )σ up to change of

{00, 01}-parity. The sectors of (V EH2
λ )σ are given as in (4.3) and the action is given by

a1vα,j =
i

2
((λ− j + 1)vα+1,j−1 − (j + 1)vα+1,j+1)

a2vα,j = −(−1)α

2
((λ− j + 1)vα,j−1 + (j + 1)vα,j+1)

a3vα,j = −i(−1)α

2
(λ− 2j)vα+1,j.

The dimension of these modules is 2(λ+ 1).

Proof. Use the results from the previous sections and the facts that σ(10, β) = 1 for all

β ∈ Z2 × Z2 and

σ(01, β) = σ(11, β) =

−1 if β = 10, 11

1 if β = 00, 01.

Note that, for each λ ∈ Z≥0, there is a unique equivalence class of Z2×Z2-graded irreducible

slc2-modules. This corresponds exactly to the unique irreducible sl2-modules, demonstrating the

existence of the bijection in Theorem 4.3.10.

4.4.5 Ungraded irreducible representations for slc2

Lemma 4.4.5. The ungraded irreducible representations for slc2 all appear as ungraded subrep-

resentations of the Z2 × Z2-graded irreducible representations in Theorem 4.4.4.

Proof. If we knew the ungraded irreducible representations for slc2, then we could use the same

process in the preceding sections to derive the same Z2 × Z2-graded irreducible modules. By

applying Corollary 4.3.11 twice, these irreducible Z2 × Z2-graded modules are either irreducible

as ungraded modules, a refining extension or a refining extension of a refining extension. In any

case, the original ungraded irreducible modules must appear as ungraded submodules of the

Z2 × Z2-graded modules.

Note that Z2 × Z2-graded modules which are equivalent up to H-parity (for some H ≤ Z2)

are isomorphic as ungraded modules.
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Lemma 4.4.6. If λ is even, then (V E+
λ )σ is irreducible as an ungraded module.

Proof. Choose a new basis {uj | j = 0, . . . , λ} where uj = (vj + vλ−j) + i(−1)j(vj − vλ−j). Note

that this is not linearly dependent since uλ−j = (vj + vλ−j)− i(−1)j(vj − vλ−j). The action of

slc2 is then

a1uj =
(−1)j+1

2
((λ− j + 1)uj−1 − (j + 1)uj+1)

a2uj = −1

2
((λ− j + 1)uj−1 + (j + 1)uj+1)

a3uj =
(−1)j+1

2
(λ− 2j)uj

(4.4)

with the convention that u−1 = uλ+1 = 0. In particular,

(a2 + a1)uj =

−(λ− j + 1)uj−1 if j even

−(j + 1)uj+1 if j odd.

(a2 − a1)uj =

−(j + 1)uj+1 if j even

−(λ− j + 1)uj−1 if j odd.

So, if we take an arbitrary element
∑

j cjuj of (V E+
λ )σ, then we can alternate applying

(a2 + a1) and (a2 − a1) (i.e. we apply ((a2 − a1)(a2 + a1))
k or (a2 − a1)((a2 + a1)(a2 − a1))

k

for some non-negative integer k) to raise/lower the basis elements of
∑

j cjuj. Eventually, this

procedure will yield a scalar multiple of either u0 or uλ, from which we can generate the entire

module. Since the entire module can be generated from a single vector, (V E+
λ )σ is irreducible.

Now we consider the case when λ is odd. Then (V EH2
λ )σ = U++

λ ⊕U+−
λ ⊕U−+

λ ⊕U−−λ where

U ζξ
λ = span{uζξj | j = 0, 1, . . . , (λ− 1)/2}

uζξj = v0,j + ζi(−1)jv1,j + ξv0,λ−j − ζξi(−1)jv1,λ−j

for ζ, ξ ∈ {−1,+1}. The action of slc2 is given by

a1u
ζξ
j = −ζ

2
(−1)j((λ− j + 1)uζξj−1 − (j + 1)uζξj+1)

(
j <

λ− 1

2

)
a1u

ζξ
(λ−1)/2 = −ζ

2
(−1)(λ−1)/2

(
λ+ 3

2
uζξ(λ−3)/2 − ξ

λ+ 1

2
uζξ(λ−1)/2

)
a2u

ζξ
j = −1

2
((λ− j + 1)uζξj−1 + (j + 1)uζξj+1)

(
j <

λ− 1

2

)
a2u

ζξ
(λ−1)/2 = −1

2

(
λ+ 3

2
uζξ(λ−3)/2 + ξ

λ+ 1

2
uζξ(λ−1)/2

)
a3u

ζξ
j = −ζ

2
(−1)j(λ− 2j)uζξj

(4.5)

with the convention u−1 = 1. (Note that uζξj was chosen so that it was an eigenvector of a3.)

Clearly U ζξ
λ gives rise to four non-isomorphic modules, since the action of a1, a2 and a3 on

uζξ(λ−1)/2 (the unique eigenvector for a3 which has eigenvalue with absolute value 1/2) is different

for different values of ζ, ξ.
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Lemma 4.4.7. U ζξ
λ is irreducible as an ungraded module.

Proof. Observe that, for j < (λ− 1)/2,

(a2 + a1)uζξj =

−(λ− j + 1)uζξj−1 if ζ(−1)j = 1

−(j + 1)uζξj+1 if ζ(−1)j = −1

(a2 + a1)uζξ(λ−1)/2 =

−λ+3
2
uζξ(λ−3)/2 if ζ(−1)(λ−1)/2 = 1

−ξ λ+1
2
uζξ(λ−1)/2 if ζ(−1)(λ−1)/2 = −1

(a2 − a1)uζξj =

−(j + 1)uζξj+1 if ζ(−1)j = 1

−(λ− j + 1)uζξj−1 if ζ(−1)j = −1

(a2 − a1)uζξ(λ−1)/2 =

−ξ λ+1
2
uζξ(λ−1)/2 if ζ(−1)(λ−1)/2 = 1

−λ+3
2
uζξ(λ−3)/2 if ζ(−1)(λ−1)/2 = −1

Take an arbitrary element
∑

j cjuj of U ζξ
λ . Similar to the proof of Lemma 4.4.6 we alternate

applying a2 + a1 and a2 − a1. In this case, we are able to obtain a scalar multiple of u0 from∑
j cjuj, from which we can generate the entire module.

In summary, we have proven the following theorem:

Theorem 4.4.8. The only finite-dimensional irreducible ungraded modules for slc2 are

(i) For each even number λ, the module (V E+
λ )σ with action given in (4.4). The dimension

of these modules is λ+ 1.

(ii) For each odd number λ and each ζ, ξ ∈ {−1,+1}, the module U ζξ
λ with action given in

(4.5). The dimension of these modules is (λ+ 1)/2.

Remark 4.4.9. It is clear that the modules U+ξ
λ and U−ξλ are Γ/H-representative negations of

each other, where Γ = Z2 × Z2/{00, 01} and H = Γ (with representatives {[00]}). If we instead

choose Γ = Z2×Z2/{00, 11}, H = Γ, then we find that the Γ/H-representative negation of U ζ+
λ

(with representatives {[00]}) is isomorphic to U ζ−
λ , with isomorphism given by uζ+j 7→ (−1)juζ−j .

The above remark shows that U ζξ are all equivalent for different values of ζ, ξ. Consequently,

there is a unique equivalence class in Theorem 4.4.8 for each λ ∈ Z≥0. This corresponds exactly

to the equivalence classes for Z2×Z2-graded slc2-modules in Theorem 4.4.4, again demonstrating

the existence of the bijection in Theorem 4.3.10.

Remark 4.4.10. Although the ungraded slc2 representations were derived from the ungraded

sl2 representations, they have a remarkably different structure. This shows that, despite the

procedure outlined in this chapter, colour algebras still have an interesting representation theory.
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Conclusion

Throughout this thesis we have examined physical applications and mathematical structures of

Lie colour algebras.

Discolouration is a powerful tool that allowed us, in Chapter 3, to classify the two Lie

colour algebra symmetries of the Lévy-Leblond equation that had previously been discovered

in [4]. We found that one algebra is isomorphic to osp(1, 0|2, 0)⊕ osp(1, 0|0, 2) and the other

is isomorphic to osp(1, 0|0, 2)⊕ osp(1, 1|2, 0). Discolouration allowed us to apply pre-existing

classification results about Lie superalgebras to these Lie colour algebras, and this classification

would have been more difficult otherwise. Due to its ability to carry across existing results for

Lie superalgebras, we hope that use of discolouration becomes more widespread in the literature.

In Chapter 3, we also discovered a new Z3
2-graded Lie colour algebra symmetry for a simple

version of the Lévy-Leblond equation and showed that this Lie colour algebra could be used to

aid in solving this version of the equation. This further demonstrates the potential utility of

Lie colour algebras in physical applications. Moreover, this new discovery indicates that there

may be other useful Lie colour algebras for the Lévy-Leblond equation that are waiting to be

discovered.

It is natural to ask whether we can find a Lie colour algebra in a more complicated version of

the equation. For instance, we could consider the Lévy-Leblond equation in (1 + d)-dimensions,

rather than just (1 + 1)-dimensions. This would be more difficult, since the construction of the

Z3
2-graded algebra relied on the fact that the differential operator ∂1 in the time-independent

equation could be expressed in terms of gamma matrices (acting on a single eigenspace). In

(1 + d)-dimensions for d ≥ 2 there will be more than one differential operator, and it is unlikely

that we would be able to solve for all differential operators in general.

We could also investigate whether a Lie colour algebra appears after adding a potential to

the equation. There has been some work in this direction: in [4], the authors showed that the

Schrödinger symmetry algebra has no Z2 × Z2-graded extension in the presence of a quadratic

potential. This is a somewhat disappointing negative result, though there could be a Lie colour

algebra for this equation which is not related to the Schrödinger algebra.
53
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The Lévy-Leblond equation is one of the few pre-existing physical equations where Lie

colour algebras have appeared. It is a challenging open problem to find Lie colour algebras in

other physical systems. Given its close relationship with the Lévy-Leblond equation, the Dirac

equation is an obvious place to look for such Lie colour algebra symmetries.

In Chapter 4 we studied representation theory, which is often a useful tool when studying

physical systems. It is desirable to have the ability to classify irreducible representations (see

e.g. [7]). We showed that there is a correspondence between the irreducible representations

(both graded and ungraded) of Lie colour algebras and the irreducible representations of Lie

superalgebras. We showed how this correspondence could be strengthened to a bijection for

Zn2 -graded algebras, and gave an example of applying this correspondence to slc2.

Unfortunately, just like for Lie superalgebras, many finite-dimensional Lie colour algebra

representations will not be completely reducible. With this in mind, it would be beneficial to

have a similar correspondence between indecomposable representations, not just irreducible ones.

Another natural next step is to apply the correspondence to known classification results for Lie

superalgebra representations. This would allow us to build up a classification of irreducible Lie

colour algebra representations.

In this thesis, we have shown how Lie colour algebras can be applied to a physical system;

namely, via symmetry algebras of the Lévy-Leblond equation. We have used and developed

mathematical techniques related to Lie colour algebras with the hope that they will aid in such

physical applications.
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Appendix A

Appendix

A.1 Gradings of Clifford algebras

The relations (3.12) naturally give rise to a complete set of both commutation relations and

anticommutation relations:

[I, γ±] =
[
I, γ1

]
= 0

[
γ1, γ±

]
= ±2γ± [γ+, γ−] = γ1

{I, γ±} = 2γ±
{
γ1, γ±

}
= 0 {γ+, γ−} = I{

I, γ1
}

= 2γ1
{
γ1, γ1

}
= 2I {γ±, γ±} = 0.

(A.1)

That the gamma matrices close under commutation and anticommutation relations is one

condition we need for a Z2 × Z2-graded structure. The other condition we need is a grading⊕
ξ∈Z2×Z2

gξ which satisfies Jgα, gβK ⊆ gα+β. We have two options for a non-trivial Z2 × Z2-

grading:

g00 = span{I} g01 = span{γ+, γ−} g10 = {0} g11 = span{γ1}

g00 = span{I} g01 = span{γ+} g10 = span{γ−} g11 = span{γ1}.

In addition to the above gradings, there are potentially more interesting ones where the basis

of each sector is a linear combination of generators. That the gamma matrices can be given

a Z2 × Z2-graded structure gives a partial explanation for the appearance of Z2 × Z2-graded

symmetry algebras. However, the above gradings cannot be used to determine the gradings of

the symmetry algebras.

The appearance of both commutation relations and anticommutation relations does not only

occur in (1 + 1)-dimensions. The gamma matrices in (3.8) are realised in the complexification of

the Clifford algebra C`1,d(R) (namely C`1,d(R)⊗ C). Note that C`1,d(R) is finite-dimensional,

of dimension 21+d [62, Chapter 14]. Since C`1,d(R) is an associative algebra, it can be given

the structure of a Lie algebra with commutator Lie bracket. Thus, C`1,d(R) can be described

in terms of both commutation and anticommutation relations. If we could find a suitable

grading, we could make C`1,d(R) a Lie colour algebra. We showed this was possible for
61
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C`1,1(R) = spanR{I, γ+, γ−, γ
1} above, and this is always possible [63]. (However, in [63] γ+

and γ− are not homogeneous elements which may be desired in the context of the Lévy–Leblond

equation.)

In addition, the tensor product of a Clifford algebra with a non-colour algebra can often

give rise to a colour algebra [71]. The above discussion perhaps gives a partial explanation for

the presence of a colour symmetry algebra for the Lévy-Leblond equation.

The (1+1)-dimensional case is unique because the (anti)commutation relations (A.1) contain

only the gamma matrices which appear in the corresponding Lévy-Leblond equation. The

reason for this is that these gamma matrices span the Clifford algebra C`1,1(R). This is not

true for higher dimensions. One could choose a small representation to minimise the number of

distinct gamma matrices needed (and add more relations), but the choice of this representation

would be somewhat arbitrary.
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